## 56:270 LINEAR PROGRAMMING

Midterm Exam -- March 18, 1987

```
PROBLEM: 
SCORE:
```

1. Sensitivity Analysis: Consider the LP problem:

Minimize $z=2 x_{1}+x_{2}+2 x_{3}-3 x_{4}$
subject to $8 x_{1}-4 x_{2}-x_{3}+3 x_{4} \leq 10$

$$
2 x_{1}+3 x_{2}+x_{3}-x_{4} \leq 7
$$

$-2 x_{2}-x_{3}+4 x_{4} \leq 12$

$$
x_{j} \geq 0, j=1,2, \ldots 4
$$

The optimal tableau is

| -z | $\mathrm{x}_{1}$ | $\mathrm{x}_{2}$ | x3 | X4 | X5 | $\mathrm{x}_{6}$ | $\times 7$ | rhs |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2.4 | 0 | 1.4 | 0 | 0 | 0.2 | 0.8 | -11 |
| 0 | 10 | 0 | 0.5 | 0 | 1 | 1 | -0.5 | 11 |
| 0 | 0.8 | 1 | 0.3 | 0 | 0 | 0.4 | 0.1 | 4 |
| 0 | 0.4 | 0 | -0.1 | 1 | 0 | 0.2 | 0.3 | 5 |

(a.) What is the current basis matrix?
(b.) What is the basis inverse matrix?
(c.) What is the current basic solution?
(d.) What are the values of the simplex multipliers?
(e.) FInd the range of the objective function coefficient of $x_{3}$ for which the above solution remains optimal.
(f.) Find the interval for the right-hand-side (currently 12) of the last constraint for which the current basis remains optimal.
(g.) How many basic (including infeasible) solutions exist for the above problem?
(2.) Write down the dual of the following LP problem:

Minimize $z=3 x_{1}+2 x_{2}-3 x_{3}+4 x_{4}$

$$
\text { subject to } \quad \begin{aligned}
& x_{1}-2 x_{2}+3 x_{3}+4 x_{4} \leq 3 \\
& x_{2}+3 x_{3}+4 x_{4} \geq-5 \\
& 2 x_{1}-3 x_{2}-7 x_{3}-4 x_{4}=2 \\
& x_{1} \geq 0, \quad x_{4} \leq 0
\end{aligned}
$$

(3.) DUAL SIMPLEX METHOD: Consider the simplex tableau below:

| $-Z$ | $X_{1}$ | $X_{2}$ | $X_{3}$ | $X_{4}$ | $X_{5}$ | $X_{6}$ | $X_{7}$ | $X_{8}$ | RHS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| --1 | 2 | 3 | 4 | 1 | 5 | 0 | 0 | 0 | 0 |
| 1 | (MIN) |  |  |  |  |  |  |  |  |
| 0 | -1 | -1 | -1 | 1 | 1 | 0 | 1 | 0 | -5 |
| 0 | 1 | -2 | -1 | 1 | 1 | 1 | 0 | 0 | 1 |
| 0 | 1 | 1 | -2 | 2 | -3 | 0 | 0 | 1 | -2 |

(a.) What is the current primal solution? Is it feasible? Does it satisfy the primal optimality conditions?
(b.) Circle every element in the tableau which the dual simplex method might select as a pivot element.
(4.) UPPER BOUNDING TECHNIQUE. Consider the following LP problem:

$$
\begin{array}{lll}
\text { MINIMIZE } & 2 x_{1}+x_{2}+x_{3}-x_{4} & \\
\text { subject to } & 2 x_{1}-x_{2}+x_{3}-2 x_{4} \leq 6 \\
& -x_{1}+x_{2}-2 x_{3}+3 x_{4} \leq 9 \\
& 3 x_{1}+x_{2}-x_{3} & \geq 3 \\
& 0 \leq x_{1} \leq 5 & \\
& 2 \leq x_{2} \leq 4 & \\
& 0 \leq x_{3} \leq 9 & \\
& 1 \leq x_{4} \leq 2
\end{array}
$$

The APL output solving this problem using the Upper-Bounding Technique is attached. Please refer to it to answer the following questions.
(a.) Explain why in the initial basic solution, i.e.

| $X_{1}$ | $X_{2}$ | $X_{3}$ | $X_{4}$ | $X_{5}$ | $X_{6}$ | $X_{7}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | 2 | 0 | 1 | 0 | 9 | 14 |

the value of the basic variables $\left(X_{5}, X_{6}, X_{7}\right)$ are NOT given by the quantity $\left(A^{B}\right)^{-1} b$, which is equal to $(6,9,-3)$.
(b.) What is the reduced cost of $x 1$ in the first iteration? Which other variables, if any, might have been selected to enter the basis and improve the objective?
(c.) Explain why $\mathrm{x}_{7}$ was selected to leave the basis in iteration \#1.
(d.) In Iteration \#2, explain how it is determined that, as the nonbasic variable $X_{4}$ is increased, the basic variable $X_{5}$ increases, while the basic variable $X_{6}$ decreases.
(e.) In iteration \#2 again, explain how the "blocking values" 45.333 and 1.444 were computed.
(f.) Why does $X_{4}$ not enter the basis?
(g.) Explain why, if the basis does not change, the basic solution at the third iteration differs from that at the second iteration.
(h.) Explain why the algorithm terminates with an "optimal solution" if the reduced costs are not all non-negative.

