56:270 LINEAR PROGRAMMING

Midterm Exam -- March 18, 1987

PROBLEM: SCORE:		1	2	3	4		TOTAL		
1. Sensiti	vity Ar	nalysis:		Consic	ler the	LP pro	blem:		
	Mini	mize z	= 2x	1 + ^x 2	+ 2x3	- 3x4			
	subj	ect to	8x-	1 - 4×2	- x3	+ 3x ₄	10		
			2x-	$2x_1 + 3x_2 + x_3 - x_4$					
				- 2x ₂	- x3	$+ 4x_4$	12		
			Xj	O, j=1,	2, 4				
The	optima	al table	au is						
	- Z	x1	×2	хз	x ₄	x5	x6	x7	rhs
	1	2.4	0	1.4	0	0	0.2	0.8	-11
	0	10	0	0.5	0	1	1	-0.5	11
	0	0.8	1	0.3	0	0	0.4	0.1	4
	0	0.4	0	-0.1	1	0	0.2	0.3	5
(a.)	What	is the	currer	nt basis	matri	x?			
(b.)	What	is the	basis	inverse	matri	х?			
(c.)	What	is the	currer	nt basic	soluti	on?			
(d.)	What	are the	e valu	es of t	he sim	plex mı	ultiplier	s?	
(e.) whic	FInd t h the	he rang above s	ge of soluti	the obj on rema	ective ains op	functio otimal.	n coef	ficient	of x ₃ fo
(f.) Iast	Find t constr	he inte aint fo	rval fo or whic	or the r ch the c	ight-h curren	and-sid t basis	e (curr remair	ently ⁻ ns opti	12) of tl mal.
(g.) abov	How i ve prob	many b olem?	asic (includir	ıg infe	asible)	solutic	ons exi	st for th
2.) Write	down	the dua	al of t	he follo	wing L	P probl	lem:		

Minimize $z = 3x_1 + 2x_2 - 3x_3 + 4x_4$

-page -2

subject to

$$x_{1} - 2x_{2} + 3x_{3} + 4x_{4} = 3$$

$$x_{2} + 3x_{3} + 4x_{4} = -5$$

$$2x_{1} - 3x_{2} - 7x_{3} - 4x_{4} = 2$$

$$x_{1} = 0, \quad x_{4} = 0$$

(3.) DUAL SIMPLEX METHOD: Consider the simplex tableau below:

	RHS	Х8	Х ₇	х ₆	Х ₅	Х ₄	Х _З	Х ₂	Х ₁	-Z
(MIN)	0	0	0	0	5	1	4	3	2	1
	-5	0	1	0	1	1	-1	-1	-1	0
	1	0	0	1	1	1	-1	-2	1	0
	-2	1	0	0	-3	2	-2	1	1	0

(a.) What is the current primal solution? Is it feasible? Does it satisfy the primal optimality conditions?

(b.) Circle every element in the tableau which the dual simplex method might select as a pivot element.

(4.) UPPER BOUNDING TECHNIQUE. Consider the following LP problem:

MINIMIZE
$$2X_1 + X_2 + X_3 - X_4$$

subject to $2X_1 - X_2 + X_3 - 2X_4 = 6$
 $-X_1 + X_2 - 2X_3 + 3X_4 = 9$
 $3X_1 + X_2 - X_3 = 3$
 $0 \quad X_1 \quad 5$
 $2 \quad X_2 \quad 4$
 $0 \quad X_3 \quad 9$
 $1 \quad X_4 \quad 2$

The APL output solving this problem using the Upper-Bounding Technique is attached. Please refer to it to answer the following questions.

(a.) Explain why in the initial basic solution, i.e.

the value of the basic variables (X_5, X_6, X_7) are NOT given by the quantity $(A^B)^{-1}b$, which is equal to (6, 9, -3).

(b.) What is the reduced cost of x1 in the first iteration? Which other variables, if any, might have been selected to enter the basis and improve the objective?

(c.) Explain why x_7 was selected to leave the basis in iteration #1.

(d.) In Iteration #2, explain how it is determined that, as the nonbasic variable X_4 is increased, the basic variable X_5 increases, while the basic variable X_6 decreases.

(e.) In iteration #2 again, explain how the "blocking values" 45.333 and 1.444 were computed.

(f.) Why does X_4 not enter the basis?

(g.) Explain why, if the basis does not change, the basic solution at the third iteration differs from that at the second iteration.

(h.) Explain why the algorithm terminates with an "optimal solution" if the reduced costs are not all non-negative.