\qquad

VAVAVAV	56:270 Linear Programming	VAVAVAV
AVAVAVA	Final Examination	AVAVAVA
VAFAVAV	May 11, 1998	VAVAVAF

- Write your name on the first page, and initial the other pages.
- Answer all questions of Part One, and 3 (out of 4) problems from Part Two.

Part One:

1. True/False \& multiple choice
2. Sensitivity analysis (LINDO)
3. Upper bounding technique
4. Markov Decision Problem

Total possible: Possible

VAVAVAFPART ONE VAVAFAF

1. Indicate whether true (+) or false (o). If false, briefly explain why, or give a counterexample.
2. If a primal LP has multiple optima, then the optimal dual solution must be degenerate.
3. A pivot matrix is a product of elementary matrices.
4. Given an LU factorization of the matrix A , the equation $\mathrm{Ax}=\mathrm{b}$ (for any given vector b) may be solved by first solving Ly=b for vector y (backward substitution) and then $\mathrm{Ux}=\mathrm{y}$ for vector x (forward substitution).
5. Every echelon matrix must have an inverse.
6. If E is an elementary matrix and A is a matrix of the same dimensions, then $\mathrm{EA}=\mathrm{AE}$.
7. Gauss-Jordan elimination is a more efficient method for solving $\mathrm{Ax}=\mathrm{b}$ (for a specific b) than is Gauss elimination with backsubstitution.
8. Suppose that you perform Gaussian elimination of matrix A, performing k elementary row operations. If $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots \mathrm{E}_{\mathrm{k}}$ are the elementary matrices corresponding to these elementary row operations, then the matrix product ($\mathrm{E}_{1} \mathrm{E}_{2} \ldots \mathrm{E}_{\mathrm{k}}$) A is an echelon matrix.
9. If E is an elementary matrix and A is a matrix of the same dimensions, then the product EA yields the same result as performing the corresponding elementary row operation on the matrix A.
10. The inverse of an elementary matrix is also an elementary matrix.
11. If a primal minimization LP problem has a cost which is unbounded below, then the dual maximization problem has an objective which is unbounded above.
12. If, when solving an LP by the simplex method, you make a mistake in choosing a pivot row, the resulting tableau is infeasible.
13. If a (primal) simplex pivot does not result in an improvement of the objective function, then both basic solutions (before and after the pivot) must be degenerate.
14. A "pivot" in a nonbasic column of a tableau will make it a basic column.
15. A "pivot" in row i of the column for variable X_{j} will increase the number of basic variables.
16. A "pivot" in the simplex method corresponds to a move from one corner point of the feasible region to another.
17. Every basic solution of the problem "minimize cx subject to $\mathrm{Ax} \leq \mathrm{b}, \mathrm{x} \geq 0$ " corresponds to a corner of the feasible region.
18. If, when solving an LP by the dual simplex method, you make a mistake in the minimum ratio test and choose the wrong ratio, the resulting pivot gives a (primal) infeasible solution.
19. When you enter an LP formulation into LINDO, you must first convert all inequalities to equations.
20. The restriction that X 1 be nonnegative should be entered into LINDO as the constraint $\mathrm{X} 1>=0$.
21. When you enter an LP formulation into LINDO, you must manipulate your constraints so that all variables appear on the left, and all constants on the right.
22. If a primal LP has multiple optima, then its dual problem must also have multiple optima.
23. If the optimal solution of a primal LP is degenerate, then the optimal dual solution must also be degenerate.
\qquad
24. If you increase the right-hand-side of a "less-than-or-equal" constraint in a minimization LP, the optimal objective value will either increase or stay the same.
25. The "reduced cost" in LP provides an estimate of the change in the objective value when a right-hand-side of a constraint changes.
26. In the two-phase simplex method, Phase One computes the optimal dual variables, followed by Phase Two in which the optimal primal variables are computed.
27. At the completion of the revised simplex method applied to an LP, the simplex multipliers give the optimal solution to the dual of the LP.
28. It is impossible for both the problems in a primal-dual pair to have unbounded objectives.
29. It is impossible for both the problems in a primal-dual pair to be infeasible.
30. The "minimum ratio test" is used to determine the pivot row in the (primal) simplex method.
31. A variable that leaves the basis in some step of the primal simplex algorithm may be chosen as the variable to enter the basis at some later iteration.
32. At the end of the first phase of the two-phase simplex method, the phase-one objective function must be zero if the LP is feasible.
33. Consider a step of the primal simplex algorithm in which x_{j} is the entering variable. The minimum ratio in this step is the value of x_{j} in the basic solution that will be obtained by the pivot.
34. In the dual simplex algorithm, the pivot element must be negative.
35. .In the dual simplex algorithm, the (primal) variable to enter the basis is chosen before the variable to leave the basis.
36. In the primal simplex algorithm, the variable to enter the basis is chosen before the variable to leave the basis.
37. If a zero appears on the right-hand-side of row i of an LP tableau, then at the next simplex iteration you cannot pivot in row i.
38. When maximizing in the simplex method, the value of the objective function cannot improve at the next pivot if the current tableau is degenerate.
39. When minimizing in the simplex method, you must select the column which has the smallest (i.e., the most negative) reduced cost as the next pivot column.
40. An LP with 8 variables and 3 equality constraints cannot have more than 50 basic feasible solutions.
41. A "minimum ratio test" is used to determine the pivot row in the dual simplex method.

Multiple Choice: Write the appropriate letter (a, b, c, d, or e): (NOTA =None of the above).
41. If, in the optimal primal solution of an LP problem (min cx st $A x \leq b, x \geq 0$), there is zero slack in constraint \#1, then in the optimal dual solution,
(a) dual variable \#1 must be zero
(c) slack variable for dual constraint \#1 must be zero
(b) dual variable \#1 must be positive
(d) dual constraint \#1 must be slack
(e) $N O T A$
42. If, in the optimal dual solution of an LP problem (min cx st $A x \leq b, x \geq 0$), variable \#2 is positive, then in the optimal primal solution,
(a) variable \#2 must be zero
(c) slack variable for constraint \#2 must be zero
(b) variable \#2 must be positive
(d) constraint \#2 must be slack (e) NOTA
43. If you make a mistake in choosing the pivot row in the simplex method, the solution in the next tableau
(a) will be nonbasic
(c) will have a worse objective value
(b) will be nonfeasible
(d) will be degenerate
(e) NOTA
44. If you make a mistake in choosing the pivot column in the simplex method, the solution in the next tableau will
(a) be nonbasic
(c) have a worse objective value
(b) be nonfeasible
(d) be degenerate
(e) $N O T A$
45. If there is a tie in the "minimum-ratio test" of the simplex method, the solution in the next tableau
(a) will be nonbasic
(c) will have a worse objective value
(b) will be nonfeasible
(d) will be degenerate
(e) NOTA
\qquad

VAVAVAVAVAVAV

The problems (46)-(49) below refer to the following LP: (with inequalities converted to equations:)
Maximize $3 \mathrm{X}_{1}+2 \mathrm{X}_{2} \quad$ Maximize $3 \mathrm{X}_{1}+2 \mathrm{X}_{2}$
subject to $2 \mathrm{X}_{1}+\mathrm{X}_{2} \leq 100$ subject to $2 \mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{X}_{3} \quad=100$ $\mathrm{X}_{1}+\mathrm{X}_{2} \leq 80 \quad \mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{X}_{4}=80$
$\mathrm{X}_{1} \leq 40 \quad \mathrm{X}_{1} \quad+\mathrm{X}_{5}=40$
$X_{1} \geq 0, X_{2} \geq 0$

$$
X_{j} \geq 0, j=1,2,3,4,5
$$

46.The feasible region includes points
(a) I, D, \& E
(c) E, F, H, \& I
(b) G, H, \& I
(d) B, D, G, I, \& C
(e) NOTA
47. At point G, the basic variables include the variables
(a) $\mathrm{X}_{2} \& \mathrm{X}_{3}$
(c) $\mathrm{X}_{1} \& \mathrm{X}_{5}$
(b) $\mathrm{X}_{3} \& \mathrm{X}_{4}$
(d) $X_{1} \& X_{4}$
(e) $N O T A$
48. Which point is degenerate in this problem?
(a) point B
(c) point H
(b) point G
(d) point I
(e) $N O T A$
49. If point G is optimal, then which dual variables must be zero, according to the Complementary Slackness Theorem?
(a) both Y_{1} and Y_{2}
(d) Y_{1} only
(b) both Y_{1} and Y_{3}
(e) Y_{2} only
(c) both Y_{2} and Y_{3}
(f) Y_{3} only
VAVAVAVAVAVAV

DEA:
Note: $D M U=$ "decision-making-unit"
50. In the maximization problem of the primal-dual LP pair, the decision variables are:
a. The multipliers for the DMUs which are used to form a linear combination of DMUs in the reference set.
b. The "prices" assigned to the inputs and outputs.
c. The amount of each input and output to be used by the DMU
d. None of the above
51. The "prices" or weights assigned to the input \& output variables must
a. be nonnegative
b. sum to 1.0
c. Both a \& b
d. Neither a nor b.

True (+) or false (o)?
52. To perform a complete DEA analysis, an LP must be solved for every DMU.

- 53. The optimal value of the LP cannot exceed 1.0.
\qquad

54. The efficiency scores of all DMUs are all computed based on a single set of "prices" of the inputs and outputs.
55 . The number of inputs and outputs must be equal.

FAVAVAVAVAVAV

Dantzig-Wolfe Decomposition:

56. Each time a subproblem is solved,
a. its objective function may have changed.
b. its constraint coefficient matrix may have changed.
c. its feasible region may have changed.
d. none of the above
e. more than one of the above is true

True (+) or false (o)?
57. The master problem's role is to determine "shadow prices" for the shared resources which will be used by subproblem proposals.
58. The final solution, selected by the master problem, consists of one proposal from each of the subproblems.
59. The variables in the master problem includes all of the variables which appear in the subproblems.
60. The number of constraints in the master problem, plus the total number of constraints in the subproblems, is equal to the total number of constraints in the original formulatino of the problem.
(Don't include simple nonnegativity constraints in these counts!)

VAVAVAVAVAVAV

Separable Programming:

- 61. In the "lambda" formulation of separable programming, there is one variable associated with each grid point.
_ 62. In the "delta" formulation of separable programming, there is one variable associated with each grid point.

63. In both the "lambda" and "delta" formulations of separable programming, a "convexity" constraint is required for each piecewise-linear function, i.e. a constraint which requires the sum of the variables to be equal to one.
64. In the "lambda" formulation of separable programming, the optimal solution cannot be less than the left-most nor greater than the right-most grid point.
65. If the "restricted basis entry" rule is used in the "lambda" formulation of separable programming, at most one lambda will be basic for each piecewise-linear function.

VAVAVAVAFAVAF

Stochastic Programming:

66. In stochastic LP with recourse, the number of "scenarios" is equal to the number of random right-hand-sides times the number of possible values for each.
67. Chance-constrained LP requires a constraint for every possible scenario.
68. If Dantzig-Wolfe decomposition were applied to the dual of the two-stage stochastic LP, the number of subproblems would be equal to the number of random right-hand-sides.
69. The value of the objective function of a chance-constrained LP is an expected value.
70. If a right-hand-side of an LP constraint had a normal distribution, the number of scenarios required by the stochastic LP with recourse is infinite.

VAVAVAVAVAVAV

2. Sensitivity analysis with LINDO:

Problem Statement: McNaughton Inc. produces two steak sauces, spicy Diablo and mild Red Baron.
These sauces are both made by blending two ingredients A and B. A certain level of flexibility is permitted in the formulas for these products. Indeed, the restrictions are that:
i) Red Baron must contain no more than 75% of A.
ii) Diablo must contain no less than 25% of A and no less than 50% of B

Up to 40 gallons of A and 30 gallonsof B could be purchased. McNaughton can sell as much of these sauces as it produces at a price per gallon of $\$ 3.35$ for Diablo and $\$ 2.85$ for Red Baron. A and B cost
\qquad
$\$ 1.60$ and $\$ 2.05$ per gallon, respectively. McNaughton wishes to maximize its net revenue from the sale of these sauces.

```
Define D = gallons of Diablo to be produced
    R = gallons of Red Baron to be produced
    A = gallons of A used to make Diablo
    A}\mp@subsup{\mp@code{2}}{2}{= gallons of A used to make Red Baron
    B
    B
```

The LINDO output for solving this problem follows:

MAX	$3.35 \mathrm{D}+2.85 \mathrm{R}-1.6 \mathrm{~A} 1-1.6 \mathrm{~A} 2-2.05 \mathrm{~B} 1-2.05 \mathrm{~B} 2$	
SUBJECT TO		
	2) $-\mathrm{D}+\mathrm{A} 1+\mathrm{B} 1=0$	
	3) $-\mathrm{R}+\mathrm{A} 2+\mathrm{B} 2=0$	
	4) $\mathrm{A} 1+\mathrm{A} 2<=40$	
	5) $\mathrm{B} 1+\mathrm{B} 2<=30$	
	6) $-0.25 \mathrm{D}+\mathrm{A} 1>=0$	
	7) $-0.5 \mathrm{D}+\mathrm{B} 1>=0$	
	8) $-0.75 \mathrm{R}+\mathrm{A} 2<=0$	
END		
OBJECTIVE FUNCTION VALUE		
1)	99.0000000	
VARIABLE	VALUE	REDUCED COST
D	50.000000	0.000000
R	20.000000	0.000000
A1	25.000000	0.000000
A2	15.000000	0.000000
B1	25.000000	0.000000
B2	5.000000	0.000000
ROW	SLACK OR SURPLUS	DUAL PRICES
2)	0.000000	-2.350000
3)	0.000000	-4.350000
4)	0.000000	0.750000
5)	0.000000	2.300001
6)	12.500000	0.000000
7)	0.000000	-1.999999
8)	0.000000	2.000000

RANGES IN WHICH THE BASIS IS UNCHANGED

OBJ COEFFICIENT RANGES

VARIABLE	CURRENT	ALLOWABLE	ALLOWABLE
	COEF	INCREASE	DECREASE
D	3.350000	0.750000	0.500000
R	2.850000	0.500000	0.375000
A1	-1.600000	1.500001	0.666666
A2	-1.600000	0.666666	0.500000
B1	-2.050000	1.500001	1.000000
B2	-2.050000	1.000000	1.500001
			RIGHTHAND
	CURRENT	SHSE RANGES	
ROW	RHSOWABLE	ALLOWABLE	
		INCREASE	DECREASE

\qquad

2	0.000000	10.000000	10.000000
3	0.000000	16.666668	3.333333
4	40.000000	50.000000	10.000000
5	30.000000	10.000000	16.666664
6	0.000000	12.500000	INFINITY
7	0.000000	6.250000	5.000000
8	0.000000	2.500000	12.500000

a. How many gallons of Diablo are produced?
b. How much profit does the firm make on these two products?
c. What additional amount should the firm be willing to pay to have another gallon of ingredient B avai
d. What is the total amount the firm should be willing to pay for another gallon of ingredient B? \qquad
e. How many gallons should they be willing to buy at this cost?
f. How much can the price of Diablo increase before the composition of the current optimal product mi: changes?
g. If one fewer gallon of ingredient B were available to be used, what would be the quantity of Diablo produced? \qquad gallons circle: (increase / decrease) the quantity of Red Baron produced? \qquad gallons circle: (increase / decrease)

VAVAVAVAVAVAV

3. UPPER BOUNDING TECHNIQUE. Consider the following LP problem:

MINIMIZE

$$
2 x_{1}+x_{2}+x_{3}-x_{4}
$$

\qquad

$$
\begin{aligned}
& \text { subject to } \quad 2 \mathrm{X}_{1}-\mathrm{x}_{2}+\mathrm{X}_{3}-2 \mathrm{X}_{4} \leq 18 \\
& -x_{1}+x_{2}-2 x_{3}+3 x_{4} \leq 18 \\
& 3 x_{1}+x_{2}-x_{3} \geq 18 \\
& \leq x_{1} \leq 4 \\
& 2 \leq x_{2} \leq 4 \\
& 0 \leq x_{3} \leq 9 \\
& 1 \leq x_{4} \leq 2
\end{aligned}
$$

The APL output solving this problem using the Upper-Bounding Technique is attached. The starting solution (found perhaps by a Phase One procedure) is $\mathrm{x}_{1}=5, \mathrm{x}_{2}=4, \mathrm{x}_{3}=1, \mathrm{x}_{4}=2$. Please refer to the APL output to answer the following questions.

Constraints

1	2	3	4	5	6	7	b
2	-1	1	-2	1	0	0	18
-1	1	-2	3	0	1	0	18
3	1	-1	0	0	0	1	18

> Objective \& Bounds

$*$	1	2	3	4	5	6	7
$c[i]$	2	1	1	-1	0	0	0
$L[i]$	0	1	0	2	0	0	0
$U[i]$	3	4	10	5	100	100	100

Optimization type: Minimization
Iteration 1
Current partition:
$\mathrm{B}=356 / \mathrm{L}=7 / \mathrm{U}=124$
Basis inverse matrix =
0 0^{-1}
1 - 1
$01-2$
Basic solution= 541215150 with $Z=13$
Simplex multipliers= $00-1$
Reduced costs= \square $20-1001$

Entering variable is X[1] from set U
Substitution Rates $={ }^{-3} 5{ }^{-7}$

Decreasing variables:	3	\square
Block at value:	.333	2.143

Block at X[3] at value 0.3333
\qquad

Iteration 2

Current partition:
$\mathrm{B}=156 / \mathrm{L}=73 / \mathrm{U}=24$
Basis inverse matrix $=$
000.3333
$10-0.6667$
010.3333

```
Basic solution=\square4 0 2 16.6667 12.6667 0 with Z = 11.3333
Simplex multipliers= 0 0 0.6666666667
Reduced costs= 0 0.3333 1.6667 -1 0 0 -0.6667
Entering variable is X[7] from set L
Substitution Rates= 0.3333 -0.6667 0.3333
----
\begin{tabular}{lrr} 
Decreasing variables: & 1 & 1 \\
Block at value: & 14.000 & 38.000
\end{tabular}
---------------------
Block at X[1] at value 14
                                    Iteration 3
Current partition:
B=756/L= 31/ U= 24
Basis inverse matrix =
                    0 0 1
                    10}
                    01 0
Basic solution= 0 40 2 26 8 14 with Z = 2
Simplex multipliers= 0 0 0
Reduced costs= 2111-1000
Entering variable is X[2] from set U
Substitution Rates= 1
\(\square\)
\(\square\)
Decreasing variables: 1
Block at value: 26.000
Uariable does NOT enter basis
```

\qquad

Objective $Z=0$

(a.) What is the reduced cost of x_{1} in the first iteration? \qquad Why was x_{1} selected to enter the basis?
(b.) Which other variables, if any, might have been selected instead of x_{1} to enter the basis in the first iteration in order to improve the objective? \qquad
(c.) As x_{1} enters the basis in iteration 1, which variables increase? \qquad which variables decrease? \qquad
(d.) Explain how the "blocking values" 0.333 and 2.143 were computed in iteration \#1.
(e.) Explain why x_{3} was selected to leave the basis in iteration \#1.
(f.) At the beginning of iteration $\# 2$, what is the value of x_{1} ?
(g.) As x_{2} enters the basis in iteration \#3, is it increasing or decreasing? \qquad
(h.) What are the substitution rates of x_{2} in iteration \#3?

1 for variable x , for variable x_{-}, and for variable x -.
(i.) As x_{2} is changed in iteration \#3, which variables increase? \qquad Which variables decrease? \qquad
(j.) In iteration \#3, why does x_{2} not enter the basis?
(k.) Explain why, if the basis does not change in iteration \#3, the basic solution at the fourth iteration differs from that at the third iteration.
(1.) Explain why the algorithm terminates in iteration \#4 with an "optimal solution" even though the reduced costs are not all non-negative.
\qquad
4. Markov Decision Problem: A component of a machine is inspected at the end of each day, and classified into one of three states:

1) GOOD Condition
2) DETERIORATED, but usable
3) BROKEN, machine is inoperable

If in GOOD condition (state 1), it will again be in state $\mathbf{1}$ (good) condition at the end of the following day with probability 0.7 , in state 2 with probability 0.2 , and in state 3 with probability 0.1.

If in DETERIORATED condition (state 2), and no repair is done, it will again be in state 2 with probability 0.6 , otherwise it will be in state 3. If it is repaired, however, it will begin the next day in GOOD condition (state 1) but may, of course, deteriorate during the day.

If in BROKEN condition (state 3), it may be either repaired or replaced. If replaced, it will be in state 1 at the beginning of the next day. If repaired, it begins the next day in state 2 .

Cost of a repair is $\$ 100$ if in state 2 and $\$ 200$ if in state 3.
Cost of a replacement is $\$ 700$.
A machine produces a profit of $\$ 200$ if it operates all day. Assume, however, that a machine which breaks and is in condition 3 at the end of the day has earned no profit during that day.

Consider now the Markov Decision Problem LP model to find the optimal policy, i.e., that which maximizes the average daily profit. Some APL output for this model is show below. (Note, however, that the MDP model is minimizing the negative of the profit, because the APL code assumes minimization!)

e. What is the meaning of the LP decision variable X_{2}^{3} in the MDP model?
f. Several values have been omitted from the LP tableau for the model. Insert these missing values.
\qquad

g. How many basic variables will this LP have, in addition to the objective value (-z)? \qquad
h. List (the names of) the basic variables of this LP which correspond to the policy of replacing a part in state 3 , but otherwise doing nothing. \qquad

Suppose that we begin with the initial basic feasible LP solution corresponding to the policy: "Do nothing unless broken, in which case repair". The initial tableau is shown below.
i. Following this policy, what is the average profit per day? \qquad
j. Following this policy, what is the fraction of the days in which the component will be found to be broken when inspected? \qquad

Iteration 0

k:	1			2	2			3	rhs
i:	1			2	3			3	
Min	00-100				0 500				120
	1		-2.3	3333	-		-2.33	33333333	0
	0		2.3	3333	-			33333333	0.6
	0	0	1				2		0.4

k. Based upon the above LP tableau, how should this policy be changed in order to improve the average daily profit? That is, what is a policy which should increase the average profit per day?
If condition is "good", \qquad
If condition is "deteriorated", \qquad
If condition is "broken", \qquad

1. Which variable will enter the basis? \qquad Which variable will leave the basis? \qquad
