tstst	56:270 Linear Programming	tstst
stats	Final Examination	aaas
tstst	May 11, 1998	tstst

• Write your name on the first page, and initial the other pages.

•Answer all questions of Part One, and 3 (out of 4) problems from Part Two.

		Possible	Score
Part One:	1. True/False & multiple choice	70	
	2. Sensitivity analysis (LINDO)	20	
	3. Upper bounding technique	20	
	4. Markov Decision Problem	15	
	Total possible:	125	

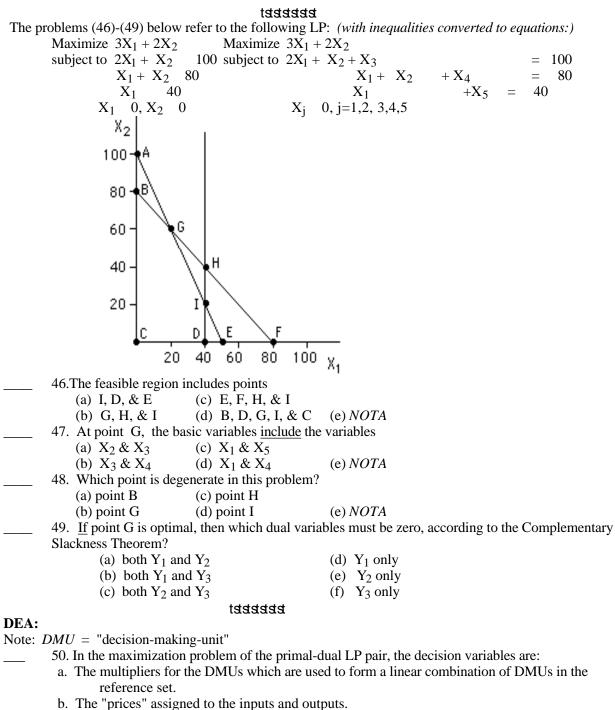
tstst PART ONE tstst

- **1.** *Indicate whether true* (+) *or false* (*o*). *If false, <u>briefly</u> explain why, or give a counterexample.*
- 1. If a primal LP has multiple optima, then the optimal dual solution must be degenerate.
- _____ 2. A pivot matrix is a product of elementary matrices.
- 3. Given an LU factorization of the matrix A, the equation Ax=b (for any given vector b) may be solved by first solving Ly=b for vector y (backward substitution) and then Ux=y for vector x (forward substitution).
- _____ 4. Every echelon matrix must have an inverse.
- _____ 5. If E is an elementary matrix and A is a matrix of the same dimensions, then EA = AE.
- 6. Gauss-Jordan elimination is a more efficient method for solving Ax=b (for a specific b) than is Gauss elimination with backsubstitution.
- 2. Suppose that you perform Gaussian elimination of matrix A, performing k elementary row operations. If $E_1, E_2, ..., E_k$ are the elementary matrices corresponding to these elementary row operations, then the matrix product ($E_1 E_2 ... E_k$)A is an echelon matrix.
- 8. If E is an elementary matrix and A is a matrix of the same dimensions, then the product EA yields
- the same result as performing the corresponding elementary row operation on the matrix A.
- 9. The inverse of an elementary matrix is also an elementary matrix.
- _____ 10. If a primal minimization LP problem has a cost which is unbounded below, then the dual maximization problem has an objective which is unbounded above.
- _____ 11. If, when solving an LP by the simplex method, you make a mistake in choosing a pivot row, the resulting tableau is infeasible.
- 12. If a (primal) simplex pivot does not result in an improvement of the objective function, then both basic solutions (before and after the pivot) must be degenerate.
- _____ 13. A "pivot" in a nonbasic column of a tableau will make it a basic column.
 - _____14. A "pivot" in row i of the column for variable X_i will increase the number of basic variables.
- _____ 15. A "pivot" in the simplex method corresponds to a move from one corner point of the feasible region to another.
- _____ 16. Every basic solution of the problem "minimize cx subject to Ax b, x 0" corresponds to a corner of the feasible region.
- _____ 17. If, when solving an LP by the dual simplex method, you make a mistake in the minimum ratio test and choose the wrong ratio, the resulting pivot gives a (primal) infeasible solution.
- _____ 18. When you enter an LP formulation into LINDO, you must first convert all inequalities to equations.
- 19. The restriction that X1 be nonnegative should be entered into LINDO as the constraint $X1 \ge 0$.
- 20. When you enter an LP formulation into LINDO, you must manipulate your constraints so that all variables appear on the left, and all constants on the right.
- _____ 21. If a primal LP has multiple optima, then its dual problem must also have multiple optima.
- 22. If the optimal solution of a primal LP is degenerate, then the optimal dual solution must also be degenerate.

- 23. If you increase the right-hand-side of a "less-than-or-equal" constraint in a minimization LP, the optimal objective value will either increase or stay the same.
- 24. The "reduced cost" in LP provides an estimate of the change in the objective value when a righthand-side of a constraint changes.
- 25. In the two-phase simplex method, Phase One computes the optimal dual variables, followed by Phase Two in which the optimal primal variables are computed.
- 26. At the completion of the revised simplex method applied to an LP, the simplex multipliers give the optimal solution to the dual of the LP.
- 27. It is impossible for both the problems in a primal-dual pair to have unbounded objectives.
- 28. It is impossible for both the problems in a primal-dual pair to be infeasible.
- 29. The "minimum ratio test" is used to determine the pivot row in the (primal) simplex method.
- 30. A variable that leaves the basis in some step of the primal simplex algorithm may be chosen as the variable to enter the basis at some later iteration.
- 31. At the end of the first phase of the two-phase simplex method, the phase-one objective function must be zero if the LP is feasible.
- 32. Consider a step of the primal simplex algorithm in which x_i is the entering variable. The
- minimum ratio in this step is the value of x_i in the basic solution that will be obtained by the pivot.
- 33. In the dual simplex algorithm, the pivot element must be negative.
- 34. In the dual simplex algorithm, the (primal) variable to enter the basis is chosen before the variable to leave the basis.
- 35. In the primal simplex algorithm, the variable to enter the basis is chosen before the variable to leave the basis.
- 36. If a zero appears on the right-hand-side of row i of an LP tableau, then at the next simplex iteration you *cannot* pivot in row i.
- 37. When maximizing in the simplex method, the value of the objective function cannot improve at the next pivot if the current tableau is degenerate.
- 38. When minimizing in the simplex method, you must select the column which has the smallest
- (i.e., the most negative) reduced cost as the next pivot column.
- 39. An LP with 8 variables and 3 equality constraints cannot have more than 50 basic feasible solutions.

40. A "minimum ratio test" is used to determine the pivot row in the dual simplex method. *Multiple Choice:* Write the appropriate letter (a, b, c, d, or e) : (*NOTA* =None of the above).

- 41. If, in the optimal *primal* solution of an LP problem (min cx st Ax b, x 0), there is zero slack in constraint #1, then in the optimal dual solution,
 - (a) dual variable #1 must be zero (c) slack variable for dual constraint #1 must be zero (e) *NOTA*
 - (b) dual variable #1 must be positive (d) dual constraint #1 must be slack
- 42. If, in the optimal *dual* solution of an LP problem (min cx st Ax b, x 0), variable #2 is positive, then in the optimal primal solution,
 - (a) variable #2 must be zero (c) slack variable for constraint #2 must be zero
 - (b) variable #2 must be positive (d) constraint #2 must be slack (e)*NOTA*
- 43. If you make a mistake in choosing the pivot row in the simplex method, the solution in the next tableau
 - (a) will be nonbasic (c) will have a worse objective value (b) will be nonfeasible (d) will be degenerate (e) NOTA 44. If you make a mistake in choosing the pivot column in the simplex method, the solution in the next tableau will (a) be nonbasic (c) have a worse objective value (d) be degenerate (b) be nonfeasible (e) NOTA 45. If there is a tie in the "minimum-ratio test" of the simplex method, the solution in the next tableau
 - (a) will be nonbasic (c) will have a worse objective value (e) NOTA
 - (b) will be nonfeasible (d) will be degenerate



- c. The amount of each input and output to be used by the DMU
- d. None of the above
- 51. The "prices" or weights assigned to the input & output variables must
- a. be nonnegative
 - b. sum to 1.0
- c. Both a & b
- d. Neither a nor b.

True (+) *or false* (*o*)?

- 52. To perform a complete DEA analysis, an LP must be solved for *every* DMU.
- _ 53. The optimal value of the LP cannot exceed 1.0.

- _____ 54. The efficiency scores of all DMUs are all computed based on a single set of "prices" of the inputs and outputs.
- _____ 55 . The number of inputs and outputs must be equal.

taaaaaa

Dantzig-Wolfe Decomposition:

- _____ 56. Each time a subproblem is solved,
 - a. its objective function may have changed.
 - b. its constraint coefficient matrix may have changed.
 - c. its feasible region may have changed.
 - d. none of the above
 - e. more than one of the above is true

True (+) or false (o)?

- _____ 57. The master problem's role is to determine "shadow prices" for the shared resources which will be used by subproblem proposals.
- _____ 58. The final solution, selected by the master problem, consists of one proposal from each of the subproblems.
- _____ 59. The variables in the master problem includes all of the variables which appear in the subproblems.
- 60. The number of constraints in the master problem, plus the total number of constraints in the subproblems, is equal to the total number of constraints in the original formulatino of the problem. (Don't include simple nonnegativity constraints in these counts!)

taaaaaa

Separable Programming:

- 61. In the "lambda" formulation of separable programming, there is one variable associated with each grid point.
- _____ 62. In the "delta" formulation of separable programming, there is one variable associated with each grid point.
- _____ 63. In both the "lambda" and "delta" formulations of separable programming, a "convexity" constraint is required for each piecewise-linear function, i.e. a constraint which requires the sum of the variables to be equal to one.
- _____ 64. In the "lambda" formulation of separable programming, the optimal solution cannot be less than the left-most nor greater than the right-most grid point.
- _____ 65. If the "restricted basis entry" rule is used in the "lambda" formulation of separable programming, at most one lambda will be basic for each piecewise-linear function.

Stochastic Programming:

taaaaaa

- 66. In stochastic LP with recourse, the number of "scenarios" is equal to the number of random right-hand-sides times the number of possible values for each.
- 67. Chance-constrained LP requires a constraint for every possible scenario.
- 68. If Dantzig-Wolfe decomposition were applied to the dual of the two-stage stochastic LP, the number of subproblems would be equal to the number of random right-hand-sides.
- _____ 69. The value of the objective function of a chance-constrained LP is an *expected* value.
- 70. If a right-hand-side of an LP constraint had a normal distribution, the number of scenarios required by the stochastic LP with recourse is infinite.

tetetet

2. Sensitivity analysis with LINDO:

Problem Statement: McNaughton Inc. produces two steak sauces, spicy Diablo and mild Red Baron. These sauces are both made by blending two ingredients A and B. A certain level of flexibility is permitted in the formulas for these products. Indeed, the restrictions are that:

- i) Red Baron must contain no more than 75% of A.
- ii) Diablo must contain no less than 25% of A and no less than 50% of B

Up to 40 gallons of A and 30 gallonsof B could be purchased. McNaughton can sell as much of these sauces as it produces at a price per gallon of \$3.35 for Diablo and \$2.85 for Red Baron. A and B cost

\$1.60 and \$2.05 per gallon, respectively. McNaughton wishes to maximize its net revenue from the sale of these sauces.

Define D = gallons of Diablo to be produced R = gallons of Red Baron to be produced $A_1 = gallons of A used to make Diablo$ $A_2 = gallons of A used to make Red Baron$ $B_1 = gallons of B used to make Diablo$ $B_2 = gallons of B used to make Red Baron$

The LINDO output for solving this problem follows:

```
3.35 D + 2.85 R - 1.6 A1 - 1.6 A2 - 2.05 B1 - 2.05 B2
MAX
SUBJECT TO
       2) - D + A1 + B1 =
                             0
       3) - R + A2 + B2 =
                             0
       4) A1 + A2 <= 40
       5) B1 + B2 <= 30
       6) - 0.25 D + A1 >=
                             0
       7) - 0.5 D + B1 >=
                             0
       8) - 0.75 R + A2 <=
                             0
 END
         OBJECTIVE FUNCTION VALUE
 1)
            99.0000000
VARIABLE
                   VALUE
                                               REDUCED COST
                   50.000000
                                                0.000000
     D
     R
                   20.000000
                                                0.000000
     A1
                   25.000000
                                                0.000000
     A2
                   15.000000
                                                0.00000
                   25.000000
     В1
                                                0.00000
     в2
                    5.000000
                                                0.00000
                   SLACK OR SURPLUS
   ROW
                                            DUAL PRICES
                      0.000000
                                               -2.350000
     2)
                      0.000000
     3)
                                               -4.350000
                      0.000000
                                                0.750000
     4)
     5)
                      0.000000
                                                2.300001
     6)
                     12.500000
                                                0.000000
     7)
                      0.000000
                                               -1.999999
     8)
                      0.000000
                                                2.000000
RANGES IN WHICH THE BASIS IS UNCHANGED
```

		OBJ COEFFIC	IENT RANGES
VARIABLE	CURRENT	ALLOWABLE	ALLOWABLE
	COEF	INCREASE	DECREASE
D	3.350000	0.750000	0.500000
R	2.850000	0.500000	0.375000
Al	-1.600000	1.500001	0.666666
A2	-1.600000	0.666666	0.500000
B1	-2.050000	1.500001	1.000000
B2	-2.050000	1.000000	1.500001
		RIGHTHAND	SIDE RANGES
ROW	CURRENT	ALLOWABLE	ALLOWABLE
	RHS	INCREASE	DECREASE

2 3	0.00000 0.000000		10.000000 16.666668		10.000000 3.333333	
4	40.0	00000	50.000	0000	10.000000	
5	30.0	00000	10.000	0000	16.666664	
6	0.0	00000	12.500		INFINITY	
7	0.0	00000	6.250		5.00000	
8	0.0	00000	2.500	0000	12.500000	
THE TABLEAU:						
ROW	(BASIS)	D	R	Al	A2	
1	ART	0.000	0.000	0.000	0.000	
2	A1	0.000	0.000	1.000	0.000	
3	R	0.000	1.000	0.000	0.000	
4	A2	0.000	0.000	0.000	1.000	
5	В2	0.000	0.000	0.000	0.000	
б	SLK 6	0.000	0.000	0.000	0.000	
7	D	1.000	0.000	0.000	0.000	
8	B1	0.000	0.000	0.000	0.000	
ROW	B1	в2	SLK 4	SLK 5	SLK 6	
1	0.000	0.000	0.750	2.300	0.000	
2	0.000	0.000	-0.500	1.500	0.000	
3	0.000	0.000	2.000	-2.000	0.000	
4	0.000	0.000	1.500	-1.500	0.000	
5	0.000	1.000	0.500	-0.500	0.000	
б	0.000	0.000	-0.250	0.750	1.000	
7	0.000	0.000	-1.000	3.000	0.000	
8	1.000	0.000	-0.500	1.500	0.000	
ROW	SLK 7	SLK 8	RHS			
1	2.000	2.000	99.000			
2	3.000	2.000	25.000			
3	-4.000	-4.000	20.000			
4	-3.000	-2.000	15.000			
5	-1.000	-2.000	5.000			
6	2.000	1.000	12.500			
7	4.000	4.000	50.000			
8	1.000	2.000	25.000			

a. How many gallons of Diablo are produced?

b. How much profit does the firm make on these two products?

c. What *additional* amount should the firm be willing to pay to have another gallon of ingredient B avai

d. What is the *total* amount the firm should be willing to pay for another gallon of ingredient B?

e. How many gallons should they be willing to buy at this cost?

f. How much can the price of Diablo increase before the composition of the current optimal product mic changes?

g. If one *fewer* gallon of ingredient B were available to be used, what would be the quantity of Diablo produced? _____gallons *circle:* (increase / decrease) the quantity of Red Baron produced? _____gallons *circle:* (increase / decrease)

taaaaaa

3. UPPER BOUNDING TECHNIQUE. Consider the following LP problem:

MINIMIZE

 $2x_1 + x_2 + x_3 - x_4$

Name or Initials

subject to	2X1	- X ₂	+	X3 -	2X4	18
	-x ₁	+ X ₂	- 2	2X3 +	3X4	18
	3X ₁	+ X ₂	-	X ₃		18
		()	x ₁	5	
			2	x ₂	4	
		()	Х ₃	9	
		1	L	X ₄	2	

The APL output solving this problem using the **Upper-Bounding Technique** is attached. The starting solution (found perhaps by a Phase One procedure) is $x_1=5$, $x_2=4$, $x_3=1$, $x_4=2$. Please refer to the APL output to answer the following questions.

Constraints
1234567 b
2 ⁻¹ 1 ⁻² 100 18 -1 1 ⁻² 3010 18
3 1 - 1 0 0 0 1 18
Objective & Bounds
* 1 2 3 4 5 6 7
c[i] 2 1 1 ⁻ 1 0 0 0
L[i] 0 1 0 2 0 0 0 U[i] 3 4 10 5 100 100 100
Optimization type: Minimization Iteration 1
Current partition: B= 3 5 6 / L= 7 / U= 1 2 4 Basis inverse matrix = 0 0 ⁻¹ 1 0 1 0 1 ⁻²
Basic solution= 5 4 1 2 15 15 0 with Z = 13 Simplex multipliers= 0 0 ⁻ 1 Reduced costs= 20 ⁻ 1001
Entering variable is X[1] from set U Substitution Rates= ⁻ 3 5 ⁻ 7
Decreasing variables: 3 Block at value: .333 2.143
Plack at VI21 at value 0 2222

Block at X[3] at value 0.3333

Iteration 2 Current partition: B=156/L=73/U=24 Basis inverse matrix = 0 0 0.3333 1 0 70.6667 0 1 0.3333 Basic solution= 4 0 2 16.6667 12.6667 0 with Z = 11.3333 Simplex multipliers= 0 0 0.66666666667 Reduced costs= 0 0.3333 1.6667 T1 0 0 T0.6667 Entering variable is X[7] from set L _____ 1 Decreasing variables: 1 Block at value: 14.000 38.000 _____ Block at X[1] at value 14 Iteration 3 Current partition: B= 7 5 6 / L= 3 1 / U= 2 4 Basis inverse matrix = 001 100 010 Basic solution= 0 4 0 2 26 8 14 with Z = 2 Simplex multipliers= 0 0 0 Reduced costs= 21171000 Entering variable is X[2] from set U Substitution Rates= 1 _____ Decreasing variables: 1 Block at value: 26.000 Variable does NOT enter basis

Name or Initials

			I	teration	4			
	rtition: L= 3 1 2 / rse matrix =	U= 4						
		001 100 010						
Basic solu	tion= 0 2 0 2	2 24 10	16 with	I Z = 0				
	ltipliers= 0 sts= 211		0					
			Optim	al Solut	ion			
i X[i] .00	1 2 00 2.000	_	4 2.000	5 24.000	6 10.000	7 16.000		
Objective :	Z= 0							
	That is the reductive was x_1 selected		-		tion?	_		
	hich other varia t iteration in ord						to enter the b	asis in the
whi	s x ₁ enters the l ich variables inc ich variables de	rease?						

- (d.) Explain how the "blocking values" 0.333 and 2.143 were computed in iteration #1.
- (e.) Explain why x_3 was selected to leave the basis in iteration #1.
- (f.) At the beginning of iteration #2, what is the value of x_1 ?
- (g.) As x₂ enters the basis in iteration #3, is it increasing or decreasing?
- (h.) What are the substitution rates of x_2 in iteration #3?
 - 1_____ for variable x___,

. .

- _____ for variable x__, and
- _____ for variable x__.
- (i.) As x₂ is changed in iteration #3, which variables increase? ______Which variables decrease? ______
- (j.) In iteration #3, why does x_2 not enter the basis?

(k.) Explain why, if the basis does not change in iteration #3, the basic solution at the fourth iteration differs from that at the third iteration.

(l.) Explain why the algorithm terminates in iteration #4 with an "optimal solution" even though the reduced costs are not all non-negative.

4. Markov Decision Problem: A component of a machine is inspected at the end of each day, and classified into one of three states:

- 1) GOOD Condition
- 2) DETERIORATED, but usable
- 3) BROKEN, machine is inoperable

If in GOOD condition (state 1), it will again be in **state 1** (good) condition at the end of the following day with probability 0.7, in **state 2** with probability 0.2, and in **state 3** with probability 0.1.

If in DETERIORATED condition (state 2), and no repair is done, it will again be in **state 2** with probability 0.6, otherwise it will be in **state 3**. If it is repaired, however, it will <u>begin</u> the next day in GOOD condition (state 1) but may, of course, deteriorate during the day.

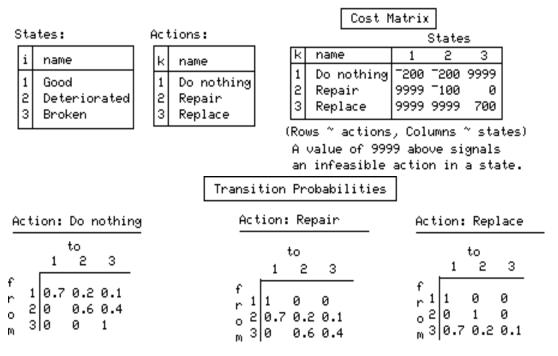
If in BROKEN condition (state 3), it may be either repaired or replaced. If replaced, it will be in state 1 at the <u>beginning</u> of the next day. If repaired, it <u>begins</u> the next day in state 2.

Cost of a repair is \$100 if in state 2 and \$200 if in state 3.

Cost of a replacement is \$700.

A machine produces a profit of \$200 if it operates all day. Assume, however, that a machine which breaks and is in condition 3 at the end of the day has earned <u>no</u> profit during that day.

Consider now the Markov Decision Problem LP model to find the optimal policy, i.e., that which maximizes the average daily profit. Some APL output for this model is show below. (Note, however, that the MDP model is *minimizing the negative of the profit*, because the APL code assumes minimization!)



e. What is the meaning of the LP decision variable X_2^3 in the MDP model?

f. Several values have been omitted from the LP tableau for the model. Insert these missing values.

		L	P Tablea	u for Ւ	1DP		
k~action→	k:	1	1	2	2	з	. R Н
i^state \rightarrow	i:	1	2	2	3	3	s
	Min	-200		-100	0	700	0
		0.3 -0.2 1		-0.7	0]-0.6 1	-0.7 -0.2 1	0

- g. How many basic variables will this LP have, in addition to the objective value (-z)?
- h. List (the names of) the basic variables of this LP which correspond to the policy of replacing a part in state 3, but otherwise doing nothing.

Suppose that we begin with the initial basic feasible LP solution corresponding to the policy: "Do nothing unless broken, in which case repair". The initial tableau is shown below.

- i. Following this policy, what is the average profit per day?
- j. Following this policy, what is the fraction of the days in which the component will be found to be broken when inspected?

Ite	Iteration 0								
k:	1 1	2	2	3					
i:	12	2	3	3	rhs				
Min	00	-100	0 50	3	120				
	10 01 00	-2.3333333 2.3333333 1	33 0	2.33333333 1.33333333 2					

k. Based upon the above LP tableau, how should this policy be changed in order to improve the average daily profit? That is, what is a policy which should increase the average profit per day? If condition is "good", ______

If condition is "deteriorated", ______ If condition is "broken", ______

1. Which variable will enter the basis? ______ Which variable will leave the basis? ______