\qquad

56:272 Integer Programming \& Network Flows Quiz \#9 - Fall 2003

1. . Location in a network: Consider the network,

where the numbers on the edges are distances. The demand at the nodes are all equal, which we may consider to be 1 unit. The table of shortest path lengths found by Floyd's algorithm is:

	1	2	3	4	5	6
1	0	31	52	71	87	88
2	31	0	40	52	69	57
3	52	40	0	19	35	67
4	71	52	19	0	17	48
5	87	69	35	17	0	65
6	88	57	67	48	65	0

a. At which node is the median (1-median) of the network?
b. What is the objective function value of the median problem at this node? \qquad
c. Consider the 2-median problem. What is the objective function value at the solution with nodes 3 and 4 selected as facility locations? \qquad
d. Which node is the vertex center (node center) of the network? \qquad
e. What is the objective function $\sigma(x)$ of the center problem at this node? \qquad
f. We are interested in finding the absolute center of the network, which might not be located at one of the nodes.

The lower bound on the objective function $\sigma(\mathrm{x})$ on each edge is shown below:

\[

\]

Which edges are candidates for containing the absolute center? (circle above.)

