56:272 Integer Programming \& Network Flows
 Quiz \#8 - Fall 2003

A traveling salesman has his home office at city \#1 and must visit each of cities \#2, 3, \& 4 exactly once, and then return to his home office.

He formulates the problem of finding the shortest tour by the integer programming model:
Minimize $\sum_{i} \sum_{j} D_{i j} X_{i j}$
s.t. $\quad \sum_{i} \sum_{j} X_{i j}=1 \quad$ forall $i=1, \ldots 4 \quad$ (i.e., a city must follow each city \#i)
$\sum_{i} \sum_{j} X_{i j}=1 \quad$ forall $j=1, \ldots 4 \quad$ (i.e., a city must precede each city $\left.\# j\right)$

$$
X_{i j} \in\{0,1\} \quad \text { forall } \quad i \& j
$$

a. By inspection, indicate the solution on the diagram on the left above.
b. Is the solution a minimum spanning one-tree? \qquad If not, find the minimum spanning one-tree (with city \#1 as the root, i.e., it is added last to the tree with two connecting edges). Indicate this on the map on the right.
c. Vertex Penalty Method: Using penalties of magnitude 1, which penalties should be assigned to each of the four vertices (cities)?

City	1	2	3	4
Penalty				

d. What are the distances now used to re-compute the minimum spanning one-tree?

	1	2	3	4
1				
2				
3				
4				

e. Indicate the new minimum spanning one-tree on the diagram on the right.

f. Multi-commodity flow model of TSP. For each of the three cities to be visited, define a commodity $Y^{k}(k=1,2,3)$ to be delivered to that city. Complete the constraints below for commodity \#2 which would be added to the TSP formulation (together with the usual assignment constraints). (Complete the blanks and circle the $\leq,=$, or \geq.)

$$
\begin{array}{cl}
Y_{12}^{2}+Y_{13}^{2}+Y_{14}^{2}(\leq,=, \geq) \\
Y_{31}^{2}+Y_{32}^{2}+Y_{34}^{2} & (\leq,=, \geq) Y_{13}^{2}+Y_{23}^{2}+Y_{43}^{2}+Y_{32}^{2}+Y_{42}^{2}=- \\
Y_{12}^{2}(\leq,=, \geq) X_{12}, & Y_{41}^{2}+Y_{42}^{2}+Y_{43}^{2}(\leq,=, \geq) X_{13}, \quad \text { etc. }
\end{array}
$$

g. Nearest Insertion Heuristic. What is the order in which the cities would be added to the tour, beginning with node $\# 1$, if the nearest insertion heuristic is used?

Order	$\# 1$	$\# 2$	$\# 3$	$\# 4$
City \#	1			

Show the tour found on the diagram on the right.

h. Farthest Insertion Heuristic. What is the order in which the cities would be added to the tour, beginning with node \#1, if the farthest insertion heuristic is used?

Order	$\# 1$	$\# 2$	$\# 3$	$\# 4$
City \#	1			

Show the tour found on the diagram on the right.

