\qquad

56:272 Integer Programming \& Network Flows
 Quiz\#7 - Fall 2003

1. Chinese Postman Problem Consider the undirected street network below:

a. Indicate the degree of every node (intersection).

The postman wishes to find the shortest tour of the network which travels each street at least once.
e. By inspection ("eye-balling it"), select the streets which should be traveled more than once.

302020
2. Consider the street network show below, where the streets are one-way as indicated:

You are to find the shortest route for a garbage truck which is to leave the city garage at the intersection \#1, travel each street in the direction indicated in order to collect garbage, and deliver its load to the landfill at the intersection \#9, and then return to the garage. (The truck may travel either way on the streets when "dead-heading", i.e., not picking up the garbage.)
\qquad
a. If non-zero, write the polarity of each intersection 1 through 10 on the map.
b. Assuming distances are drawn to scale, indicate on which streets you would "dead-head" in order to travel the shortest distance.

120303

3. Pipes of length 19 feet are kept in stock for use in manufacturing. Today's production schedule requires 2 pieces of length 3 feet, 9 of length 8 feet, and 4 of length 10 feet.

```The following patterns were initially suggested for cutting the pipes: Pattern no. Cost ---Pattern--- 1 40 00 1 1 \```

a. Let Xi be the number of pipes cut using pattern $\#$ i. Then the LP which could be used to fill the requirements at lowest cost has the tableau:

X1	X2	X3		RHS
				(MIN)

Indicate the coefficients and, in the shaded column, " $=$ ", " $\leq$ ", or " $\geq$ ".
The LP solution, ignoring the integer restriction on Xi , is:

c. Write the knapsack problem which might be used to generate a new pattern which would allow a savings:
$\qquad$

Minimize $\qquad$ a1 + $\qquad$ a2 + $\qquad$ a3
s.t. $\qquad$ a1 + $\qquad$ $\mathrm{a} 2+$ $\qquad$ a3 (circle: $\leq,=, \geq$ ) $\qquad$

The optimal solution of this knapsack problem is

$\begin{gathered} \begin{array}{rrr} i & l & a \\ 1 & 3 & 1 \\ 2 & 8 & 2 \\ 3 & 10 & 0 \end{array} \\ l \text { = req'd length, } a=\# \text { pieces to be cut } \end{gathered}$   This is pattern \#3   3 patterns have now been defined.		

d. The new LP which allows this new pattern to be used, is

X1	X2	X3	X4		RHS
					(MIN)

