1. Network Simplex Method. Consider the minimum-cost network flow problem below:

Positive numbers at the nodes represent supplies, and negative numbers represent demands. Numbers on the edges represent unit shipping cost. Consider each undirected edge to be equivalent to a pair of directed edges, i.e., the shipments may be directed either way. (The arc directed to the right at node E is an artificial arc, with no flow allowed.)

We begin with the basis (spanning tree) shown, with the dual variable $\mathrm{W}_{\mathrm{E}}=0$.
Find:
Flow $\mathrm{X}_{\mathrm{EC}}=$ \qquad
Dual variables $\mathrm{W}_{\mathrm{B}}=$ \qquad $\& \mathrm{~W}_{\mathrm{C}}=$ \qquad
The reduced costs $\bar{C}_{B C}=$ \qquad $\& \bar{C}_{C B}=$ \qquad
Suppose that the $\operatorname{arc}(\mathrm{B}, \mathrm{C})$ is entered into the basis (i.e., the spanning tree).

- Which arc will be replaced? \qquad
- What will be the flow in arc (B,C)? \qquad
- What will be the value of the dual variable W_{C} after the basis change (assuming we keep W_{E} $=0$)? \qquad
What is the node-arc incidence matrix of the original spanning tree shown above?

				$\mathbf{0}$
				$\mathbf{0}$
				$\mathbf{0}$
				$\mathbf{0}$
				$\mathbf{1}$

(The last column corresponds to the "artificial arc" from node E.)

