Name:

56:272 Integer Programming & Network Flows Quiz #6 – Fall 2003

1. *Network Simplex Method*. Consider the minimum-cost network flow problem below:

Positive numbers at the nodes represent supplies, and negative numbers represent demands. Numbers on the edges represent unit shipping cost. Consider each undirected edge to be equivalent to a pair of directed edges, i.e., the shipments may be directed either way. *(The arc directed to the right at node E is an artificial arc, with no flow allowed.)*

We begin with the basis (spanning tree) shown, with the dual variable $W_E = 0$.

Dual variables $W_B =$ & $W_C =$

The reduced costs $\overline{C}_{BC} = _$ & $\overline{C}_{CB} = _$

Suppose that the arc (B,C) is entered into the basis (i.e., the spanning tree).

- Which arc will be replaced? _
- What will be the flow in arc (B,C)? _
- What will be the value of the dual variable W_C after the basis change (assuming we keep $W_E = 0$)?

What is the node-arc incidence matrix of the original spanning tree shown above?

		0
		0
		0
		0
		1

(The last column corresponds to the "artificial arc" from node E.)