\qquad

> | 56:272 Integer Programming \& Network Flows |
| :---: |
| Quiz \#2 - September 10, 2003 |

Three professional baseball teams are trying to find places for six available players within their remaining salary limits of $\$ 35$ million, $\$ 20$ million, and $\$ 26$ million, respectively. The following table shows how valuable each player would be to each team on a scale of 0 to 10 , and the player's current annual salary (in \$millions).

We want to find a maximum total score allocation of players to teams that fits within salary limits (assuming that the three teams cooperate in finding the solution, rather than competing).

Define Decision Variables

$$
X_{i j}= \begin{cases}1 & \text { if player } \mathrm{i} \text { is assigned to team } \mathrm{j} \\ 0 & \text { otherwise }\end{cases}
$$

and problem parameters
Value $_{i j}=$ value of player i to team j
Salary $_{i}=$ annual salary (in \$millions)
Limits $_{j}=$ salary limit (in \$millions) of team \mathbf{j}

1. Write the expression for the objective function of this problem, using the above symbolic parameters and variables:

$$
\text { Maximize } \sum_{i=1}^{3} \sum_{j=1}^{6}
$$

2. Write the budget constraint for team \#3, using the above symbolic parameters and variables:
3. Write one of the "multiple choice" constraints, e.g. the constraint that specifies that player \# 1 cannot be selected by more than one team.
4. Suppose that players 3 and 5 are bitter rivals and should not be members of the same team. This restriction will require \qquad linear constraints. Write one of them here:
5. In general, the optimal value of the integer LP will be (circle: \geq or \leq) the optimal value of its LP relaxation.

\qquad
6. The location problem in this week's homework (in which branch banks were to be located) is an example of a set \qquad problem.
7. The total number of linear constraints of this problem is \qquad .
8. Write one of these linear constraints, where X_{A} is a binary variable indicating that a branch bank is located in county A, etc.

