\qquad

56:272 Integer Programming \& Network Flows
 Quiz\#11 - Fall 2003

1. When applying Benders' method to the capacitated plant location problem, the "master" problem...
a. evaluates the total cost if a specified set of plants are open
b. selects the next trial set of plants to be open
c. gives an upper bound on the cost of the optimal solution
d. none of the above.
\qquad 2. The subproblem of Benders' decomposition algorithm applied to the capacitated plant location problem...
a. finds solutions which, if feasible, must be optimal.
b. produces a lower bound on the optimal value of the original problem.
c. produces an upper bound on the optimal value of the original problem.
d. none of the above
\qquad 3. Johnson's algorithm is to solve...
a. assembly-line balancing problems
c. traveling salesman problems
b. flowshop scheduling problems
d. none of the above
\qquad 4. The quadratic assignment problem...
a. includes quadratic constraints.
b. has the same constraints as the original assignment problem.
c. includes $X_{i j}^{2}$ terms in the objective function.
d. is a specialized form of the "generalized assignment problem" (GAP).
e. none of the above.

True (+) or False (o)?

5. Simulated annealing is a heuristic method which searches in a "neighborhood" of the current solution and may replace the current solution with a neighbor even if the neighbor has a higher cost (assuming a minimization problem).
\qquad 6. Simulated annealing is a randomized search algorithm, which may give different results each time it is applied.
\qquad 7. A "flowshop" differs from a "jobshop" in that all jobs in a flowshop follow the same sequence of machines, although each job's processing times will vary (and could be zero for some machines.)

Consider the following jobs which have arrived at a flowshop:

Job	A	B	C	D	E
Time, Machine 1	7	3	4	1	5
Time, Machine 2	4	5	2	3	6

8. In what sequence should the jobs be processed in order to complete all jobs in the shortest possible time? \qquad , \qquad , \qquad , , \qquad
9. The quantity being minimized in the preceding question (8) is called the \qquad .

Benders' Decomposition of Capacitated Plant Location Problem: Consider the problem of determining which one or more of four possible plants should be built in order to serve 6 customers at minimum cost. (Four of the plant sites are adjacent to customer locations.) The data are:

	Customer	Customer	Customer	Customer	Customer	Customer	Plant	
年								
	1	2	3	4	5	6	Fixed	
Capacity	cost							
Plant 1	0	17	77	43	93	52	10	8544
Plant 2	17	0	61	40	76	36	14	4050
Plant 3	77	61	0	60	30	39	15	1917
Plant 4	43	40	60	0	87	61	11	396
Demand	2	2	10	1	10	4		

(Total demand=29)
\qquad

Benders' decomposition is used to solve this problem, using the variation in which the master problem is not optimized-- instead a solution, if any, is found which is better than the incumbent).

<><><><>

We begin by solving the subproblem with the trial set of plants \{1,2,3,4\}, i.e., build all four plants:

9. What is the missing value of α_{2} in the first support that is generated? \qquad

Next we solve the Master problem to get a new trial set of plants to be built:

```
    Master Problem
Initial status vector: J= \phi (empty)
(suboptimized, i.e., a solution Y such that v(Y) < incumbent.)
Trial set of plants: 2 3
with estimated cost 5675 < incumbent ( = 15581)
Current status vectors for Balas' additive algorithm: J = {3, 2, -1, -4}
```

<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>
Next the $2^{\text {nd }}$ subproblem is solved using the new trial set of plants ($2 \& 3$):
\qquad

```
Plants opened: # 2 3
Minimum transport cost = 748
Fixed cost of plants = = 5967
    Total = 6715
*** New incumbent! *** (replaces 15581)
Optimal Shipments
\begin{tabular}{r|rrrrrrr} 
& 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline 2 & 2 & 2 & 0 & 1 & 5 & 4 & 0 \\
3 & 0 & 0 & 10 & 0 & 5 & 0 & 0
\end{tabular}
(Demand pt #7 is dummy demand for excess capacity.)
|cc}\begin{array}{c}{\mathrm{ Dual Solution }}\\{\mathrm{ of Transportation }}\\{\mathrm{ Problem }}
Supply constraints
        i= 1 2 3 4
        U[i]= 04600
Demand constraints
        l= lrrrrrr
Generated support is }\alphaY+\beta\mathrm{ ,
where }\beta=104, an
        i \alpha[i]
        1 8544
        24694
        3 1917
        4 396
This is support # 2
```


The master problem is solved again:

	Master Problem
Initial status vector: $J=\{3, ~ 2,-1,-4\}$	
$\star * *$ No solution with $v(Y)$ less than incumbent! $* * *$	
(Current incumbent: 6715, with plants \#2 3 open)	

10. Using the two supports that have been generated, what cost $\underline{\mathrm{v}}_{2}(\mathrm{Y})$ will be estimated for the solution $\mathrm{Y}=(1,0,1,0)$, i.e., building plants $1 \& 3$? \qquad
11. This is (check:) \qquad over-estimate \qquad under-estimate \qquad cannot be determined
