\qquad

田出出出出出出世出世出世出世出世
世世 56：272 Integer Programming \＆Network Flows＊＊

	possible	score
1．Multiple Choice	25	-
2．Traveling Salesman Problem	15	-
3．Median of Network	12	-
4．Center of Network	16	-
5．Primal Simplex Method for Networks	20	-
6．Project networks	15	-
7．Generalized Assignment Problem	12	-
8．Benders＇method for Capacitated Plant Location	20	-

（Approximately 15 minutes per problem！）
I．Multiple Choice：
1．Balas＇algorithm is referred to as the＂Additive Algorithm＂because ．．．
a．the objective is the sum of（nonnegative）costs．
b．variables are added one at a time to the set of fixed variables．
c．no multiplications or divisions are required
d．none of the above．
＿＿＿2．An optimal solution of a traveling salesman problem is always．．．
a．a Hamiltonial tour
b．a Lagrangian tour
c．an Euler tour
d．none of the above．
3．A simple plant location．．．
a．places no limits on the plant capacities．
b．is also referred to as the median problem．
c．specifies the values of the plant capacities（if built）．
d．none of the above．
4．When applying Benders＇method to the capacitated plant location problem，th problem．．．
a．evaluates the total cost if a specified set of plants are open
b．selects the next trial set of plants to be open
c．gives an upper bound on the cost of the optimal solution
d．none of the above．
＿＿＿5．The＂rural＂postman problem differs from the original postman problem in th
a．the postman is required to travel only a subset of the total set of edges．
b．the total length of a tour is restricted to a day＇s travel time．
c．the edges that may be traveled more than once is limited to a subset of the edges．
d．none of the above．
＿＿＿6．The quadratic assignment problem．．．
a．includes quadratic constraints．
b．has the same constraints as the original assignment problem．
c．include $X_{i j}^{2}$ terms in the objective function．
d．is a specialized form of the＂generalized assignment problem＂（GAP）．
e．none of the above．
7．The generalized assignment problem．．．
a．includes the original assignment constraints，plus some additional constra
b．can be solved by the Hungarian algorithm together with branch－and－boun
c．includes the transportation problem as a special case．
d．none of the above．
\qquad

- - -

8. A genetic algorithm for the line-balancing problem with N tasks to be assign stations ...
a. if it converges, guarantees that the solution is optimal.
b. uses a population size equal to N.
c. represents an individual within the population by a string of numbers of
d. none of the above.
9. Floyd's algorithm for a graph with n nodes...
a. finds the shortest paths from a single source node to each of the other nod
b. requires exactly n iterations to be performed.
c. is a specialized version of the LP simplex algorithm.
d. none of the above.
10. If the current solution of the transportation problem is degenerate...
a. the next iteration will produce no improvement in the objective function.
b. the reduced cost of at least one zero shipment is zero.
c. the number of sources must be equal to the number of destinations.
d. none of the above.
11. A node-arc incidence matrix of an undirected graph with n nodes...
a. has n rows.
b. is a square matrix.
c. has n columns.
d. none of the above.
___ 12. The adjacency matrix dfiratedgraph with n nodes...
a. is a square matrix.
b. is a symmetric matrix.
c. has $+1,-1$, and 0 as entries.
d. none of the above.
___ 13. The LP formulation of the problem to find the shortest path in a network...
a. has right-hand-sides which are all zero.
b. may require branch-and-bound if the solution is not integer.
c. has a dual LP which finds the longest path in a network.
d. none of the above.
12. The LP model for an nxn assignment problem...
a. has an integer optimal solution only if the costs are integer.
b. has $2 n$ basic variables.
c. has only degenerate basic feasible solutions.
d. none of the above
13. The following is true of an n-item zero-one knapsack problem with integer item values, and capacity...
a. when solving by branch-\&-bound, the \# of terminal nođemiplearch tree is $\frac{h}{6}$
b. in the DP model, the state variable possable values
c. in the DP model, the number of stages is n
d. none of the above
14. When using the Hungarian method to solve assignment problems, if the nul lines drawn to cover the zeroes in the reduced matrix is equal to the number of
a. a mistake has been made, and one should review previous steps.
b. this indicates that no solution exists.
c. this means that the current cost matrix has a zero-cost assignment.
d. none of the above.
15. A minimum spanning tree of an undirected network with n nodes...
a. can be given a strongly-connected orientation.
b. contains no nodes of degree 2
c. has n-1 edges.
d. none of the above
___ 18. Vogel's Approximation Method (VAM)...
\qquad
a. always yields a basic feasible solution of a transportation problem.
b. cannot be applied to an assignment problem, because of degeneracy.
c. will never result in a degenerate solution.
d. none of the above
16. A matrix which is unimodular...
a. must be square.
b. must be lower triangular.
c. has a determinant equal to zero.
d. none of the above.
17. A node-arc incidence matrix of a graph with n nodes...
a. has n-1 rows.
b. is a square matrix.
c. has rank n-1.
d. none of the above.
18. The adjacency matrix afindmectedgraph with n nodes...
a. has rank n-1
b. is a square symmetric matrix.
c. has a determinant equatlo
d. none of the above.
19. The LP formulation of the problem to find the minimum completion time of
a. has two variables for each project activity.
b. may require branch-and-bound if the solution is not integer.
c. has a dual LP which finds the longest path in the project network.
d. none of the above.
20. Djikstra's algorithm for a graph with n nodes...
a. finds the shortest paths from a source node to each of the other nodes.
b. requires exactly n iterations to be performed.
c. is a special case of the simplex algorithm for LP.
d. none of the above.
21. The vertex penalty method for the traveling salesman problem...
a. adds penalties to the vertices within a subtour found by the assignment pr
b. is an example of Lagrangian relaxation.
c. may be used to compute an upper bound.
d. none of the above.
22. In simulated annealing, ...
a. the probability of accepting a worse solution decreases at each iteration.
b. no initial feasible solution is required.
c. the objective function improves at each iteration.
d. none of the above.
II. Traveling Salesman Problem. Five products are to be manufactured weekly on the same machine. The table below gives the cost of switching the machine from one product to another product. (Assume that this is also the cost of switching to th last product of the week to the first product to be scheduled the following week!)

	A		to:B	C	D
fram	\div	6	7	7	6
B	3	-	2	8	3
C	4	2	-	7	3
D	1	3	3	-	5
E	5	3	2	6	-

a. The nearest neighbor heuristic, starting with product $D, y i e l d s$ the product sequence \qquad , _-_ _-- , _-with cost \qquad -
\qquad
After row \& column reduction of the above matrix to solve the associated assignme problem (with large number, M, inserted along the diagonal), we have:

to: A	B	C	D	E
fram	M	1	2	2
0				
B	1	M	0	6
C	2	0	M	5
D	0	2	2	1
E	3	3	0	0

b. Is there a zero-cost assignment for the above reduced cost matrix?
c. If the answer to (b) is "no", perform additional reduction steps as necessar What is the solution of this assignment problem?
A->B-> \qquad , C-> \qquad ,D-> \qquad , E->
c. What is the cost of this assignment? ? _-_-_-_-_
d. Is it a valid product sequence? \qquad
e. If yes, is it guaranteed If not, why not? to be optimal? \qquad What bound (circle: upper / lower) on the optimal cost does this result provide?

What single constraint might be added to the assignment problem which would eliminate the solution which you have obtained (but not eliminate any valid sequence)?
III. The Median Plant Location Problem: Consider the network below, where the bold numbers beside the nodes are the demands to be supplied.

Floyd's algorithm was applied to find the following matrix of shortest path Iengths:
\qquad

Shortest Path Lengths

		1	2	3	4	5	6	7
\pm	1	0	3	2	9	8	13	10
r	2	3	0	4	6	5	10	7
\square	3	2	4	0	10	9	14	8
	4	9	6	10	0	3	4	5
	5	8	5	9	3	0	7	2
	E	13	10	14	4	7	0	7
	7	10	7	8	5	2	7	0

Weighted Shortest Fath Lengthe

The addition/ substitution heuristic was applied to try to find the 2 -median set, giving the output below:

Cost	Locations
60	21
36	52
79	3
34	5
31	41
44	54
41	6
42	5
31	7
49	51

Subztitution result: Locstions \square
Cost: f
Six values are blanked in the output of the addition/substitution heuristic. Wha are these values?
a. ____-_ (the cost of the 1-median set $\{5\}$)
b. _-_-_-_ (the facility added to the 1-median set \{5\})
c. _-_-_-_- (the cost of the solution after the addition step)
d \& e. _--_-_ (the pair of facilities resulting from the substitution step
f. _-_-_-_-_ (the cost of the final solution)
IV. Center of Network. Consider the network :
\qquad

Shartest Path Lengths								
to								
		1	2	3	4	5	$\underline{\square}$	7
	1	0	3	2	9	B	13	10
	2	3	0	4	$\underline{6}$	5	10	7
	3	2	4	0	10	9	14	8
	4	9	6	10	0	3	4	5
	5	8	5	9	3	0	7	2
	6	13	10	14	4	7	0	7
	7	10	7	8	5	2	7	0

a. Find the verteenter for the network. \qquad
b. Below is some output displaying a lower bound which may be computed for th center objective function on each edge. What is the missing value?

d. Based on (c), which edges can be eliminated from consideration when searching for the absolute center? \qquad
e. Below is information about the center objective function on the edge (4,5). What are the three missing values?

```
Mimimax Dbyjentive on Edge (4,5)
```

Monotonically increasing distance functions: d (x,k) where
$k=4 \quad 4$

$$
d(i, k)=0 \quad 4
$$

$$
d(j, k)=3 \quad i
$$

Monotonically decreasing distance functions: $d(x, k)$ where

$k=$	5	7
$d(i, k)=$	3	5
$d(j, k=$	6	

Ilistance fonctions which inorease to a peak at a point a wits froom i, then decresee: d(x,k) where

$k=$	1	2	3
$d(i, k)=$	9	E	b
$d(j, k)=$	$=$	5	9
$d=$	C	1	1

h. Sketch the center objective function on the edge (4,5). What is the edge center of the edge $(4,5)$?
\qquad

V. Primal Simplex Algorithm for Networks.

Consider the network below, where the number alongside each node represents supply or demand, i.e., node \#4 has a supply of 2 units of a commodity, node \#5 has unit, node \#l requires 1 unit, and node \#7 requires 4 units. The numbers alongside the arcs represent unit shipping costs. The initial feasible solution is shown in bol

a. The node-arc incidence matrix will have \qquad rows and \qquad columns.
b. In order to obtain a complete basis of the LP, an "artificial" arc must be added. Indicate it above by adding an arc.
c. In the LP to find the minimum-cost flow, how many rows are there in the constraint matrix? \qquad How many columns? \qquad
d. Write the node-arcincidence matrix of the subgraph representing the above basis of the LP.
\qquad
e. Using the minimum spanning tree (plus artificial "root" arc) as an initial basi compute the corresponding basic solution, i.e., flows. Indicate these flows belc on the arcs:

f. Is the basic solution in (e) degenerate? \qquad
g. Using the same basis, compute the dual variables (simplex multipliers), and indicate below, alongside each node:

h. "Price" the arc (6,7), i.e., compute its reduced cost. Should this arc enter the basis or not?
i. Regardless of whether the above test indicates that the arc (6,7) should enter basis, please enter that arc into the basis and indicate the new basis on the network below:

\qquad
VI. Project Scheduling. Consider the project with the A-O-A (activity-on-arrow) n given below.

a. How many activities (i.e., t ansodłsi)ncluding "dummies", are required to complete th project?
b. Complete the labeling of the nodes $1,2,3,4, \& 5$ on the network above.
c. The activity durations are given below on the arrows. Compute the Early Times (Late Times (LT) for each node, writing them in the box (with rounded corners) b node.

d. Find the slack ("total float") for activity F .
e. Which activities are critical? (circle: A B C-D E F G I J K)
f. What is the earliest completion time for the project?
g. Complete the A-O-N (activity-on-node) network below for this same project. (Ad "dummy" activities which may be necessary.)

\qquad
h. Suppose that the dummy activity labelled "J" is deleted. Indicate the resulting network below:

VII. Generalized Assignment Problem: Consider the problem of assigning 6 jobs to 3 machines (each with limited capacity):

a. Formulate this problem as a binary integer programming problem.
b. Suppose that the machine capacity constraints are relaxed, using the Lagrangiar relaxation method. The first 2 iterations of the subgradient optimization method to maximize the lower bound appears below.

Lambla $=0.75$
Typer hound $Z \star=120$

Iual value is A
Variablez zelected from git zetz are:
131121
Fesources ueed are: 7924 21, Gvailable: 202738)

Subgradient of Dual Objective iz | | C | C |
| :--- | :--- | :--- |

Stepsize is 0.00861821
\qquad

Iteretion 퓨 2

Wultiplier vector to $=0.50847500$ Objentive function of relaxation:

Tual value is 77.8305
Yarisblez zelected from Gut zetz are:

Rezourcez used are: 0 53 50, (Available: 2027 38)
Subgradient of Inal Dhiective iz -202612
Stepsize is K
c. Several values have been omitted from the output. Compute theirinallmelsing the stepsize K!):
A
A ------
B

C

E \qquad
d. Does this Lagrangian relaxation possess the "integrality Riridpler.êye's? No Why or why not?
e. Based upon your answer in (d), the lower bound which can be obtained from this relaxation is (circtes: $=\geq$) that of the LP relaxation.
VIII. Benders' Decomposition Algorithm for Plant Location: Consider the following randomly-generated problem in which demand in 8 cities is to be satisfiec by building plants in one or more of four of the cities:

		i ${ }^{\text {d }}$	1	2	3	4	5	6	7	8	K	F
		1	0	25	671	18	57	45	34	44	10	5000
		2	25	0	891	17	81	45	45	69	17	3000
	\square^{1}	3	678	89	0	85	14	68	50	52	10	7000
0^{7}	\square^{4}	4	1817	17	85	0	75	55	49	56	14	4000
		5	578	81	14	75	0	67	47	36	18	1000
	Demand:		3	5	7	3	8	4	2	9	69	
0^{6}			Wumber of zources $=\mathrm{M}=5$ Wumber of destinations $=\mathrm{F}=\mathrm{s}$ Total demand: 41									

a. State the mixed-integer programming formulation of the problem. How many continuous variables (X) and how many binary (zero-one) variables (Y) are require
\qquad

A trial solution was evaluated, in which plants $1,2,3, \& 4$ are to be open. The result was:

Subproblem solution
Flants opened: \#1 234
Minimum transport cost $=1077$ Fixed cost of plants $=19000$ Total $=20077$
Genersted support is $\mathrm{dY}+\mathrm{b}$, where $\begin{aligned} & \alpha=55704173714049661000 \\ & \alpha b=-1772 \end{aligned}$
Thiz is zupport \# 1

				4	5	6			
	3	0	0	0	5	0	0	2	20
${ }^{\mathbf{r}} \mathbf{2}$	0	5	0	0	0	4	2	0	06
${ }^{-} 3$	0	-	7	0	3	0			0
M	0	0	0	3	0	0	0	07	

(Ilemand pt \#\#y is dumy demand for excesz capacity.)
b. Is the optimal solution of this subproblem deg@ieckere?es No Why or why not?

Next a suboptimal solution of the Master Problem is found:

Master Froblem

```
(suloptimized, i.e., a solution
    Y such that v(Y) < incmbent.)
Trial set of plants : Emptys
with estimated cost
Current atatus vectore for Balas'
additive algorithm:
    j: 
wuderline: 0 0 0 0 0
```

c. What is the valwn $0,0,0,0,0$) of the master problem objective which is blanked out above?

Using this solution of the master problem (which was sub-optimized), the subproblem, i.e. transportation problem, was next solved:

Subproblem Solution

Plants opened: \# \#mpty
以inimum tranzport cost = 410000
Fixed cost of plants = 0
Total $=410000$
Generated support is $\alpha \mathrm{Y}+\mathrm{b}$, where
$\alpha=-95000-167000-93000-136000-179000$
$2 \mathrm{~b}=410000$
Thiz iz zupport $\# 2$
Next the master problem is sub-optimized again:
\qquad

Master Froblem

〔suboptimized, i.E., a solution Y zuch that vCT * incumbent.
Trial set of plante: 345
with estimated cost \qquad
Current ztatus rectore for Balas' additive algoritlum:
$\begin{array}{lrrrrr}j: & -1 & -2 & 3 & 5 & 4 \\ -1 \text { line: } & 0 & 0 & 1 & 0 & 0\end{array}$

d. What is the value blanked out in the master problem solution above?
 incumbent value, which is, \qquad _.
f. Suppose that node \#10 on the implicit enumeration tree above represents the master problem solution. Which nodes have already been fathomed?
g. Which variables have been fixed at node \#6? \qquad
h. After node \#10 is fathomed, which node is considered next in the implicit enumeration?
Next the subp $\overline{\mathrm{r}} \overline{\mathrm{o}} \overline{\mathrm{b}} \overline{\mathrm{l}}-\bar{m}$ was solved, using the set of plants $\{3,4,5\}$:
Subproblem solution
Flants opened: \# 345
Minimum tranzport cost $=611$
Fixed cost of plants $=12000$
Total $=12811$
Genersted support is ortb, where
$\alpha=50003000731042521504$
$2 \mathrm{~b}=-255$
This is support \# 3
i. Suppose that, based upon the approxikforwhich we have constructed, we wish to estimate the cost of the proposal to open plants \#1, $2, \& 4$.

Current List of Supports of $V(Y)$

Current approximation of $V(Y)$ is
Maximum \{ $\alpha[i] Y+b[i]\}$
where α \& b are:

α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	b
5570	4173	7140	4966	1000	-1772
-95000	-167000	-93000	-136000	-179000	410000
5000	3000	7310	4252	1504	-255

$\underset{k}{\text { support }}$	$\sum_{i=1}^{5} \alpha_{i}^{k} Y_{i}+\beta^{i}$
1	12937
2	12000
3	11977

\qquad
What is the value $\operatorname{Vb}_{3}(1,1,0,1,0)$?
Does this give us an over- or under-estimate of the cost?
Could the set of plants $\{1,2,4\}$ possibly be optimal?

Explain your answer:

