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✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠
56:272 Integer Programming & Network Flows

Final Exam - December 13, 1995
✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠

Select a total of five problems:
1.  Knapsack problem
2.  Generalized Assignment Problem
3.  Benders' decomposition
4.  Integer Programming Model Formulation
5.  Traveling Salesman Problem
6.   Lagrangian relaxation

✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠

1.  Knapsack Problem:   A "knapsack" is to be filled to maximize the value of the contents,
subject to a weight restriction:

At most one unit of an item should be included.  The total weight of the knapsack cannot exceed 12
pounds.

a.  Formulate this problem as a 0-1 ILP problem.

Partial output of the branch-&-bound algorithm for this problem appears below:
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b.  Complete the blanks in the output above.
c.   Draw the current search tree, using the information in the above output.

Dynamic programming output for this problem is given below:
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d.  Complete the computations in the five blank boxes in stage 4 of the DP output above.

e.  Suppose that the capacity of the knapsack is only 11 pounds.  Show how to use the DP
output to determine the optimal knapsack contents.

✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠

2. Generalized Assignment Problem:  Consider the problem of assigning 6 jobs to 3 machines
(each with limited capacity):
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a.  Formulate this problem as a binary integer programming problem.

b.  Suppose that the integer restrictions are relaxed and the problem solved by the simplex LP
algorithm.  Will the optimal values of the variables be necessarily integer?

c.  Suppose that the machine capacity constraints are relaxed, using the Lagrangian relaxation
method.  The first 2 iterations of the subgradient optimization method to maximize the lower bound
appears below, where the optimal value was estimated to be 120, and a stepsize parameter was
assigned the value 0.75.



page 5 56:272 IP&NF Final Exam - Fall 1993 name ___________

d.  Several values have been omitted from the output.  ("Variables selected from GUB sets" refers to
the machine selected for each of the jobs.)  Compute their values:

A _____ B _____ C _____ D ______ E _____
F _____ G _____ H _____ I  ______ J _____
K _____

e.  What is the "integrality property" of a Lagrangian relaxation?

Does this particular Lagrangian relaxation have this property?  Circle:  Yes  No

f.  What does your answer in (e) imply about the strength of the lower bound which can be obtained
from this relaxation, compared to that of the LP relaxation?  (Is it stronger,weaker, or identical?)

✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠

3.   Benders' Decomposition of Capacitated Plant Location Problem
Consider the following problem in which demand in 8 cities is to be satisfied by plants to be built in
one or more of cities 1,2,3, & 4:

a.  State the mixed-integer programming formulation of the problem.  How many continuous
variables (X) and how many binary (zero-one) variables (Y) are required?

A trial solution was evaluated, in which all four plants are to be open.  The result was:

The Master Problem was next optimized.  (A constraint KiYi∑
i=1

4

 ≥ Dj∑
j=1

8

  was included in the master

problem in order to guarantee that only solutions with sufficient capacity to meet the demand were
produced.)   The result was:
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b.  What is the value of the estimated cost of Y=(0,1,1,1) found by the Master problem  ("blanked")
above?

Next, the subproblem was solved, using the trial set of plants {2,3,4}, resulting in:

 
c.  What are the two values blanked above?

When the Master problem is solved once more, the result is:

d.  Compute the estimated cost found by the master problem.

The subproblem is again solved, this time with trial set {1,2,4}, yielding:

e.  Using the information below from the subproblem solution, compute the blanked value of α4
above.
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f.  The solution of the transportation problem (the shipments) is degenerate.  Based upon the
information given, which variable(s) is/are basic but zero in the solution?

4.  Integer Programming Model Formulation
a.  Consider the street network below:

The postal service wishes to place the smallest number of mailboxes at intersections such that
there is a mailbox at one or both  ends of each of the eleven streets in the network.  Define Yi =
1 if a mailbox is placed at node i, and 0 otherwise. Formulate the problem as an integer LP.

b.  For the same network above, formulate an integer LP (defining Yi as before) to maximize the
number of mailboxes such that no  street has a mailbox at both  ends.

c.  Suppose that we consider each street segment (i.e., edge) to have length 1.  We wish to place
exactly two mailboxes at the nodes, and to assign each of the nodes to a mailbox so that the
distance from the farthest node to its assigned mailbox is minimized.  Define Xij = 1 if node j is
assigned to a mailbox at node i, 0 otherwise.  Formulate the problem as an integer LP.
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d.  Which of the problems above (a, b, and/or c) are of the type known as a set covering problem?
___

e.  Which of the problems above (a, b, and/or c) are of the type known as a p-center problem? ___

5.  Traveling Salesman Problem.   Five products are to be manufactured weekly on the same
machine.  The table below gives the cost of switching the machine from one product to another
product.  (Assume that this is also the cost of switching to the last product of the week to the first
product to be scheduled the following week!)

                                       to: A            B           C            D           E
                          from: A - 3 5 7 6

B 3 - 1 8 2
C 4 1 - 8 3
D 1 3 1 - 5
E 5 3 2 6 -

a.  The nearest neighbor heuristic, starting with product A, yields the product sequence
___________  with cost ____.

After applying the "Hungarian Method" to the above matrix to solve the associated assignment
problem (with large number, M, inserted along the diagonal), we have:

           to: A           B           C           D           E
                          from: A M 0 2 0 2

B 2 M 0 3 0
C 3 0 M 3 1
D 0 2 0 M 3
E 3 3 0 0 M

b.  What is the solution of this assignment problem?_____________________________
c.  What is its cost? _________
d.  Is it a valid product sequence? _______  If not, why not? _________________________
e.  If not a valid sequence, what bound (circle:  upper / lower ) on the optimal cost does this

result provide? ________
f.  If not a valid sequence, what single constraint might be added to the assignment problem

to eliminate the solution which you have obtained (but not eliminate any valid sequence)?

g.  If the assignment problem does not yield a valid sequence, how might we branch to create
subproblems in a branch and bound method?  (That is, specify the two direct descendents
of the original problem.)

 Lagrangian Relaxation:  A small airline must schedule a departure from Cedar Rapids Airport to each of
four cities:  Des Moines, Minneapolis, Chicago, St. Louis.  The available departure times are 1 pm, 2 pm,
and 3 pm.  The airline has only 2 departure lounges, and so at most two flights can be scheduled during a
time slot.  The airline estimates the following profits per flight (in hundreds of dollars) as a function of
departure time:

Departure time
     Destination 1:00 2:00 3:00
1. Des Moines 10 9 8
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2. Minneapolis 11 9 9
3. Chicago 12 10 9
4. St. Louis 10 11 10

Define decision variables  Xij = 1 if flight to destination i is scheduled at time j,
and  0 otherwise (i=1,2,3,4; j=1,2,3).

a.  Formulate the problem of maximizing profit as an integer LP.

b.  Find (by inspection) a feasible solution to the problem.  What is its profit?  Is this an upper or lower
bound on the optimal profit?

c. How would you apply Lagrangian relaxation to this formulation?  (That is, select one or more constraints
which you might relax.)

d.  Assign a value of 5 to each Lagrange multiplier, and demonstrate how you would solve the Lagrangian
relaxation.

e.  What is the bound on the profit provided by this solution of the Lagrangian relaxation?  Is it an upper or
lower bound?

f.  Is the solution found in (d) feasible?  If not, demonstrate how you would adjust the multipliers so as to
improve the bound found in (e) and/or improve feasibility.

g.  Modify your formulation to handle the following conditions.  (Define any additional decision variables
which you might find necessary.)

(i)   Flights to Chicago and St. Louis cannot depart during the same time slot.

(ii)   The flight to Des Moines should depart before the flight to Chicago.

(iii)   There is a cost of 1 for each time slot in which one or more departures are scheduled.


