\qquad

```
******************************
    56:272 Integer Pgmg & N etw ork Flow s
    F inal E xam -- D ecember 12,1990
    Instructor: D.L. Bricker
*************************************
```


Answer 1 （out of 2）of PART ONE，plus 3 （out of 4）questions from PART TWO．

PART ONE＿1．Traveling salesman problem
＿＿2．Assignment problem

PART TWO
3．Gomory＇s cutting plane algorithm
4．Benders＇partitioning algorithm
5．Generalized assignment problem
6．Location problem in network

－ロロPART ONE日ロロ

（1．）Traveling Salesman Problem Consider the 5 cities below，which are each to be visited by a vehicle which will begin and end its route at city \＃1．（Warning：the horizontal \＆ vertical axes are scaled differently！）

a．Apply the nearest neighbor heuristic（starting at node 1）to the problem．What is the length of the tour？
b．Find the minimum spanning one－tree of the nodes above（letting node \＃1 be the ＂root＂node）．Is it a tour？
c．Assign vertex penalties and perform one iteration of the vertex penalty method， using a＂unit penalty＂of 10 ．Does it result in a tour？（Indicate the result below．）
\qquad

d. Explain how the vertex penalty method may be interpreted as a Lagrangian relaxation method for the traveling salesman problem. What constraints are being "relaxed"? What is the objective function of the Lagrangian relaxation?
e. Perform a second iteration of the vertex penalty method. Is the result a tour?

f. Based upon your answers above, state an upper and alower bound on the length of the optimal tour.
g. Suppose that the Hungarian algorithm were applied to the distance matrix of a TSP. Does the solution always satisfy the constraint relaxed in (d)?
\qquad
(2.) Assignment Problem: Consider the problem of assigning 5 jobs to 5 machines, with the following cost matrix (where the element in row i \& column j is the cost of assigning job ito machine j) :

1	5	3	4	10
3	8	5	1	8
10	9	5	9	3
9	5	6	2	10
2	10	1	6	7

a. Formulate this problem as a binary integer LP.
b. If you apply the simplex algorithm to the LP relaxation of this problem, are you guaranteed of obtaining an integer solution? Why?
c. How many basic variables does the LP relaxation of this problem have? How many are positive at the optimum? Such a basic solution of an LP has the property called
\qquad .
d. Apply the row reduction step of the Hungarian algorithm to this matrix, and then the column reduction step, completing the matrices below

row reduction:

column reduction:

e. Check the resulting matrix for optimality. Are any further steps required? If so, perform them. If not, what is the optimal solution?
\qquad
f. Write the dual constraints of the LP relaxation of the assignment problem. Show that the values by which the rows \& columns were reduced in (d) satisfy these constraints, and the complementary slackness conditions.
g. How do the generalized assignment problem and the quadratic assignment problem differ from the assignment problem such as was solved above? (How do the models differ mathematically? Describe differences in the applications which the three formulations might model.)

(3.) GOMORY'S FRACTIONAL CUTTING-PLANE ALGORITHM

Consider the problem:

$$
\begin{aligned}
& \text { Maximize } 3 X_{1}-X_{2} \\
& \text { subject to } 3 X_{1}-2 X_{2} \leq 3 \\
& 5 X_{1}+4 X_{2} \geq 10 \\
& 2 X_{1}+X_{2} \leq 5 \\
& X_{1}, X_{2} \geq 0 \& \text { integer }
\end{aligned}
$$

After adding slack \& surplus variables $\mathrm{X}_{3}, \mathrm{X}_{4}$ and X_{5}, and solving the LP relaxation, we get the optimal tableau:

a. A constraint was added to the problem to exclude this optimal LP solution without excluding any integer feasible solution, using row \#4 as the "source row":
\qquad

Solurce row iz \# 4

i:	3	4	5	$\underline{6}$	$\mathrm{r}^{1} \mathrm{H}_{2}$
Source row:	-0.429	1	3.14	0	4.43
Cut:	il	0	-0.143	1	-0.429

(G[G] (= alack variable for new nut.)
iz bssic but \approx
What is the value which is blocked out above? a = \qquad
b. Te constraint in (a) may be expressed in terms of the original variables $X_{1} \& X_{2}$:

The gut which is added is
(in terme of original variables):

i.e., $2 \mathrm{X}_{1}-\mathrm{X}_{2} \leq \mathrm{b}=$ \qquad

We next append the new constraint to the tableau above:

and perform a dual simplex pivot to regain feasibility:

z	1	2	3	4	5	6
1	0	0	0	0	-0.25	-1.25
0	1	0	0	0	0.25	-3.25
0	0	1	0	0	0.5	-0.5
0	0	0	0	1	3.25	-0.75
0	0	0	1	0	0.25	-1.75

(c.) What are the values blanked out in the tableau above?
$\mathrm{C}=$ \qquad , $d=$ \qquad
(d.) Why is the dual, rather than the primal (i.e., the ordinary) simplex method used to re-optimize after adding the new constraint?
\qquad
(4.) Benders' Decomposition Algorithm for Plant Location: Consider the following randomly-generated problem in which demand in 8 cities is to be satisfied by building plants in one or more of four of the cities:


```
K = capacity,
F = fixed cost
<READY?>
```


Plant Location Problem
(a.) State the mixed-integer programming formulation of the problem. How many continuous variables (X) and how many binary (zero-one) variables (Y) are required?
(b.) Give the expression for the optimal value as a function of Y , i.e. $\mathrm{v}(\mathrm{Y})$, expressed in terms of X.

A trial solution was evaluated, in which all four plants are to be open. The result was:
\qquad

Optimal Shipmente

	tor								
	1	2	3	4	5	$\underline{\square}$	7	8	9
0	6	0	0	0	5	8	0	0	0
\% M	0	1	0	0	0	0	3	0	11
3	0	0	2	0	0	0	0	0	15
4	0	0	0	5	0	0	0	10	2

(Demand pot 픀 is dumbr demand for excess capacity.)
WOTE: Solution iz degenerete!

Supply constraints: $\mathrm{U}=00000$ Demand constraints: $V=\begin{array}{lllllllll}0 & 0 & 0 & 17 & 38 & 19 & 22 & 0\end{array}$

0	42	75	33	0	0	14	8
42	0	43	32	39	9	0	30
75	43	0	46	65	52	43	45
33	32	46	0	19	23	21	0

(c.) What are the values of the two coefficients of the linear support which are blanked out above?
\qquad
(d.) Why is the dual solution not unique? How might additional linear supports be computed, using this fact?
(e.) Why is the solution to the transportation problem labeled as "degenerate"?

Next the Master Problem is solved:

Master Froblem

Trial set of plants: 123 with estimated cost $1276<$ incmbent ($=1405$)

Using this solution of the master problem (which was sub-optimized), the subproblem, i.e. transportation problem, was next solved:

Next the master problem is sub-optimized again:

Master Frohlem

Trisel zet of plante: 134

Current status ventors for Balas' additive algoritlm:
$j: \quad 1 \quad 3{ }^{-2} \quad 4$
waderline: 0 0 1 0
(f.) What is the value blanked out above?
(g.) Sketch the enumeration tree, showing the node corresponding to the solution of the master problem above, and indicate parts of the tree which have been fathomed.
\qquad

Next the subproblem was solved, using the set of plants \{1, 3, 4\}:

```
        # Solution of Froblem
Flesse enter plant sites to be open
\square:
    134
Total capacity exceedz total demand. Ilumy demand point added.
... zolving transportation problem ...
Minimum traneport cost = 794
Fixed cost of plants = 716
    Total = 1510
CFTU time = 13.05 zec.
Generated support aY+b, where a = 536 23 820 486, b = -332
This is support # 3
```

(h.) Can Benders' algorithm be terminated at this iteration? Explain why or why not.
(i.) Suppose that we wish to estimate the cost of the proposal to open plants $\# 2,3, \& 4$. How can this be done using V3 ? Does this give us an over- or underestimate of the cost? Could this set of plants possibly be optimal?
(j.) Suppose at some node of the enumeration tree, the "status vector" J is $\{\underline{2},-1, \underline{4}\}$. What would be the next node to be considered if this node is fathomed? (Give the value of J.)
(5.) Generalized Assignment Problem: Consider the problem of assigning 4 jobs to 3 machines (each with limited capacity):

a. Formulate this problem as a binary integer programming problem.
b. Suppose that the capacity constraints are relaxed, using the Lagrangian relaxation method. The first 3 iterations of the subgradient optimization method to
\qquad
maximize the lower bound appears below, where the value of a feasible solution was found to be 56 , and a stepsize parameter was assigned the value 0.75 .
Lambla $=0.75$
Tpper hound $Z^{\star}=56$
Iterstion \# 1 "
Multiplier vector $\mathrm{U}=000$ Objective function of relanation:

	to				
			2	3	4
${ }^{+} 1$	11	14		13	21
2	12	23		17	20
	21	14	41		14

Iual value ie 51
Fariables selected from GUE sete are:
1133
Rezourcee ued are: 16024 ,
(Available: 2327 17)
Subgradient of Iual Objective is $\quad 7{ }^{-7}-277$
Stepsize is 0.0765306

Iteration \# ${ }^{\text {\# }} 2$	
Multiplier vector $0=000.535714$	
Objective function of relaxation:	Iual value iz C
tor	Variables selented fromi gTE sets are:
$\begin{array}{llll}1 & 2 & 3\end{array}$	1112
\pm	Fesources used are: 41 16 0,
1 11 14 13	(Available: 2327 17)
-17 2 12 4 17	Suburadient of Ioual Objentive is 1s -11
m 3 $27.964323 .642917 .3571 \quad b$	Stepsize iz 0.00869563

Iteration \# $\quad 3$

c. Several values have been omitted from the output. Compute their values:
a. \qquad (cost coefficient of the Lagrangian relaxation)
b. \qquad (cost coefficient of the Lagrangian relaxation)
c. \qquad (the value of the dual objective function, i.e., the lower bound.)
d. \qquad (the value of the third Lagrangian multiplier)
e. \qquad f. \qquad g. \qquad (the subgradient of the dual objective fn.)
d. Does this Lagrangian relaxation possess the "integrality property"? Why or why not?
e. What does your answer in (d) imply about the strength of the lower bound which can be obtained from this relaxation?
\qquad
(6.) The Median Plant Location Problem: Consider the network below:

i	1	2	3	4	5	6	7	8
$\mathrm{Y}[\mathrm{i}]$	35	54	64	75	76	95	32	21
$Y[i]$	98	86	93	86	97	43	16	71
$W \mathrm{t}[\mathrm{i}]$	7	6	3	4	8	4	4	4

Floyd's algorithm was applied to find the following matrix of shortest path lengths (and the predecessors of nodes on the shortest paths):

Then the matrix of weighted shortest path lengths was computed:
\qquad

a. Formulate the 3-median problem as a binary integer LP.

The addition/substitution heuristic was applied to try to find the 3-median set, giving the output below:

\qquad
b. Four values are blanked in the output of the addition/substitution heuristic. What are these values?
a. \qquad (the cost of the 1-median set $\{2\}$)
b. \qquad (the facility added to the 1 -median set $\{2\}$)
c. \qquad (the cost of the set of facilities: $2,7, \& 4$)
d. \qquad (the facility substituted for \#2)
c. Find the vertex center for this network (with unweighted distances).
d. Define the objective function which is being minimized in the problem of finding the absolute center of the network.
e. Below is some output displaying a lower bound which may be computed for the center objective function on each edge. What is the missing value?

```
Lowrer Bownde on Locel Edge-Dentere
```

i	j	LB
2	6	54.5
2	7	54.5
6	7	67.5
4	6	70
1	2	73
2	3	73
2	4	73
2	8	73
1	3	
3	4	83.5
3	5	85
1	8	87
4	5	91.5

f. Which edges can be eliminated from consideration when searching for the absolute center?
g. Below is information about the center objective function on the edge $(1,3)$. What are the three missing values?

$$
\text { The objective Function on edge }[1,3]
$$

Honotonicelly incressing diztance functions: $d(x, k)$ where
$k=1$
$d(i, k)=0$
$d(j, k)=29$
Monotonically decreasing diztance functionz: dcx,ky where
$k=$
$d(i, k)=294142$
$d(j, k)=012 \square$

Distance functions which increase to a peak at a point 4 wits
from i, then decrease: d(x,k) where

$\mathrm{k}=$	2	ε	7	8
	22	81	95	30
	12	61	85	
$4=$				23.5

\qquad
h. Sketch the center objective function on the edge $(1,3)$. What is the edge center of the edge $(1,3)$?

