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As technology becomes more sophisticated, the problems of appropriate function
allocation, mode errors, and misuse of automation will continue to challenge
system safety and e� ciency. Addressing these problems will require the ®eld of
cognitive ergonomics to consider three important challenges. First, to understand
the human implications of self-organizing, multi-agent automation may involve
recognizing the unique monitoring and control requirements. While current
research has studied how people control a small number (2±10) of agents, the
future will likely introduce the challenge of supervising hundreds of agents. Multi-
agent automation that consists of hundreds of loosely connected intelligent agents
may exhibit powerful new adaptive behaviours that may be di� cult for people to
understand and manage. Secondly, to understand human interaction with
increasing complex automation may require more comprehensive analysis and
modelling techniques. Current analysis techniques such as analysis of variance,
tend to rely upon static representations of the human±system interaction when
dynamic representations are needed. Thirdly, understanding human interaction
with this increasingly complex automation may bene®t from reconsidering new
constructs to explain behaviour. The constructs of the information processing
approach may not be su� cient to explain reliance on multi-agent automation.
Addressing the challenge of this new technology will require a theoretical under-
standing of human behaviour that goes beyond a task-based description of well-
de®ned scenarios. Cognitive ergonomics must develop an understanding of the
basic cognitive demands associated with managing multi-agent automation, tools
that consider the dynamics of the interaction, and constructs that address the
dynamic decision making that governs reliance.

1. Introduction
Until recently, automation has supported a few well-de®ned functions that do not
interact with many other system components. As automation continues to evolve, it
will generate important challenges for cognitive ergonomics. For example, techno-
logical advancement may enable automation to evolve into a swarm of interacting
agents that may become increasingly powerful and autonomous. This multi-agent
automation o� ers increased robustness, ¯exibility, and adaptability; however, under-
standing how to support the human supervisory control of swarms of agents remains
an unresolved issue. Many researchers in computer science and robotics have rea-
lized the important capabilities of multi-agent automation, and further development
of this technology seems likely (Beni and Wang 1993, Brooks and Flynn 1993,
Fukuda et al. 1998). This paper addresses three emerging cognitive ergonomics issues
associated with increasingly complex automation. First, cognitive ergonomics must
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identify the particular cognitive demands associated with the emergent properties of
multi-agent automation that may make it di� cult to understand. Secondly, to under-
stand these cognitive demands, cognitive ergonomics must develop more compre-
hensive analysis and modelling techniques. Thirdly, cognitive ergonomics might
bene®t by rethinking the constructs underlying the dynamic decision making associ-
ated with reliance on multi-agent automation. The objective of this paper is to out-
line considerations and initial directions associated with each of these emerging
issues.

2. Agent-based automation and new cognitive demands for supervisory control
Early analysis of human interaction with automation considered technology that
replaced human operators in performing well-de®ned functions. Functions were
statically allocated to humans or automation based on the inherent capabilities of
each (Fitts 1951). With static function allocation, the division of labour between
human and automation is ®xed by the designer, and functions once performed by
the human are now performed by the automation. Subsequently, more subtle forms
of automation have evolved and researchers have described multiple levels of auto-
mation (Sheridan 1987), di� erent types of automation (Lee and Sanquist 2000),
combinations of types and levels (Parasuraman et al. 2000), and the dynamic alloca-
tion of function. With dynamic function allocation, the division of labour between
human and automation depends on the moment-to-momen t inclination of the
human or the automation, each intervening or delegating functions (Hancock and
Scallen 1996, Sarter and Woods 1997). Issues of authority and independence that
have emerged with dynamic function allocation have become increasingly important
(Sarter and Woods 1994). Agent-based automation requires a new description of the
interaction between automation and the human supervisor because swarms of agents
adapt to the environment in unpredictable ways. This may lead to an emergent
function allocation, where the division of labour between the human and automation
depends on capabilities that emerge as the human and automation adapt to a
dynamic environment. Unlike current automation, future automation may not
have a static capability that operators dynamically allocate to ful®l speci®c system
functions. Instead, its capability may evolve as it interacts and adapts to the envir-
onment. Automation that consists of many agents may require fundamentally dif-
ferent types of control, such as the dynamic manipulation of agent autonomy and
authority, as well as indirectly guiding the emergent behaviour of swarms of agents.
The emergent behaviour of the swarm may extend human capabilities far beyond
more conventional automation, but it may introduce important demands on the
operator. Figure 1 summarizes the change in display and control interactions as
technology moves toward agent-based automation.

2.1. A few functionally discrete agents
This represents the situation in many current systems, where operators must super-
vise and dynamically allocate function with several separate elements of automation
that have not been assembled into an integrated system. Automation ®lls a relatively
simple role of augmenting the humans’ perception and control. The operator
requests a speci®c behaviour and the automation responds in a deterministic man-
ner. In this situation, signi®cant human performance issues emerge as the operator is
forced to bridge the gaps between functionally isolated automation (Bainbridge
1983, Lee and Sanquist 1996).
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2.2. Several uncoordinated and loosely coupled agents
This situation shows a more sophisticated sort of automation, which changes modes
in response to the human operator, to other elements of automation, and to the
environment. In this situation, operators must monitor multiple elements of the
automation to ensure that their joint behaviour is productive. This sort of automa-
tion can greatly extend operator capabilities; however, mode errors illustrate the
potential for inducing errors and degrading system safety and performance (Degani
et al. 1995, Sarter and Woods 1995).

2.3. Swarms of self-organizing agents
This situation shows a qualitative change in supervisory control associated with an
increasing number of agents. The many interacting agents may induce macro-level
behaviour that cannot be easily predicted by the behaviour of individual agents.
Although this added complexity can undermine the operator’s monitoring e� ciency,
it supports a much more powerful and adaptive system. The operator is now respon-
sible for managing the macro-level, emergent behaviour of a swarm of agents that
interact in a complex manner, while also monitoring the micro-level behaviour of
individual agents.

Multi-agent automation is an alternate design paradigm that may make it poss-
ible to respond to environmental variability while reducing the chance of system
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Figure 1. Possible supervisory control situations associated with increasingly complex
automation.



failure. These capabilities have important applications in a wide range of domains

including planetary exploration, landmine neutralization, or even data exploration,

where hundreds of simple agents might be more e� ective than a single complex
agent. Biology-inspired roboticists provide a speci®c example of agent-based auto-

mation. Instead of the traditional approach of relying on one or two larger robots,

they employ swarms of insect robots as an alternative (Brooks et al. 1990, Johnson

and Bay 1995). The swarm robot concept assumes that small machines with simple

reactive behaviours can perform important functions more reliably and with lower

power and mass requirements than can larger robots (Beni and Wang 1993, Brooks

and Flynn 1993, Fukuda et al. 1998). Typically, the simple programs running on the
insect robot are designed to elicit desirable emergent behaviours in the insect swarm

(Sugihara and Suzuki 1990, Min and Yin 1998). For example, a large group of small

robots might be programmed to search for concentrations of particular mineral

deposits by building upon the foraging algorithms of honeybees or ants.

In addition to physical examples of multi-agent automation, agent-based auto-

mation has a huge potential in searching large complex data sets for useful informa-

tion. For example, the pervasive issue of data overload and the di� culties associated
with e� ective information retrieval suggest a particularly useful application of multi-

agent automation. Current approaches to searching large complex data sources, such

as the Internet, are ine� ective. People are likely to miss important documents, dis-

regard data that is a signi®cant departure from initial assumptions , misinterpret data

that corroborates or con¯icts with an emerging understanding, and disregard more

recent data that could revise interpretation (Patterson 1999). These issues can be
summarized as the need to broaden searches to enhance opportunity to discover

highly relevant information, promote recognition of unexpected information to

avoid premature ®xation on a particular viewpoint or hypothesis, and manage

data uncertainty to avoid misinterpretation of inaccurate or obsolete data (Woods

et al. 1999). These represent important challenges that may require innovative design

concepts and signi®cant departures from current tools (Patterson 1999).

Current tools rely on two general approaches for making complex systems com-
prehensible. The ®rst is a bottom-up process where algorithms search, group, and

transform data according to syntactical patterns in the data. An example of this

approach is a search engine that identi®es relevant documents based on syntactic or

lexical relationship between keywords. The second approach is a top-down organ-

ization of the data based on a normative model of the system under consideration.

An example of this approach is Yahoo’s hierarchical ontology used to organize

Internet content. The bottom-up approach fails because linking meaning to statis-
tical relationships between keywords is problematic and the top-down approach fails

because the ontology used to organize the data re¯ects a single perspective, which is

not necessarily that of the user. Developing a generic ontology may be a fundamen-

tally intractable problem.

The inherent limits of these approaches require an innovative approach. Agent-

based automation could combine the strengths of the top-down and the bottom-up

approaches. Swarms of agents could forage for information and collaborate with the
user to create an emergent ontology that organizes the information according to the

user’s goals. Although this innovative design concept o� ers substantial bene®ts, it is

not clear how designers should support the cognitive demands associated with mana-

ging swarms of agents.
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Organization and control of swarm behaviour presents several unique monitor-

ing and control challenges compared to traditional systems. The study of biological

systems, where many simple individuals produce complex emergent behaviour, may
provide some useful insights into how multi-agent automation might be managed

(Bonabeau et al. 1997). Three important factors govern emergent behaviour: swarm

behaviour emerges from parallel interaction between many agents, positive feedback

accentuates certain activities, and random variation generates new activities and

encourages adaptation (Resnick 1991). For example, swarms of bees dynamically

adjust their foraging behaviour to the environment in a way that does not depend on

the performance of any individual. A colony of honeybees functions as a large,
di� use, amoebic entity that can extend over great distances and simultaneously

tap a vast array of food sources (Seeley 1997). Positive feedback and random vari-

ation interact to support robust and e� ective swarm behaviour (Stickland et al.

1995). A speci®c mechanism that underlies the self-organizing behaviour of

swarms is stimergy communication. Stimergy communication is based on a dynami-

cally evolving structure, and is a powerful alternative to a static set of instructions

that specify a sequence of activity. Through stimergy, social insects communicate
directly through the products of their work. This sort of communication promotes

the swarm to evolve into a self-organizing system that can generate many forms of

collective behaviour. In this way, the interaction among many simple individuals

produces complex behaviour for the group (Bonabeau et al. 1997). A speci®c ex-

ample of stimergy is the self-organizing foraging behaviour of ants. Stimergy control

of foraging behaviour involves a trade-o� of speed of trail establishment and search
thoroughness; a trail that is more quickly established will sacri®ce the thoroughness

of the search. Parameters that govern this trade-o� include the strength of the

positive feedback and the amount of random variation (Stickland et al. 1995). The

e� ectiveness of this behaviour can easily be generalized to foraging of robot swarms

as they explore a planet’s surface or software agents as they explore a complex

data set.

Control mechanisms, such as stimergy, o� er great potential in extending human
capabilities, but only if a thorough empirical and analytic investigation identi®es the

display requirements, viable control mechanisms, and range of swarm dynamics that

can be comprehended and controlled by humans. For example, as a self-organizing

system, the swarm could dynamically adjust its information or material foraging

behaviour to a dynamic environment to accomplish its goals e� ectively. This char-

acteristic of multi-agent automation, in contrast to conventional automation, has

important implications for how people monitor and control the control of individual
robots and the overall swarm. Interacting with agent-based automation requires

people to consider swarm dynamics independently of the individual agents.

Control of the swarm may involve manipulating global parameters of positive feed-

back and random variation, which are not traditional ways of controlling automa-

tion. Importantly, the functionality of the automation may emerge over time as the

swarm of agents adapts to the environment. Because of this, multi-agent automation

introduces the need to support emergent function allocation. Cognitive ergonomics
should take a leading role in de®ning the nature of multi-agent automation so that

the behaviour and interaction mechanisms are designed to be compatible with

human goals and cognitive limits.

242 J. D. Lee



3. Modelling approaches to understand human interaction with multi-agent
automation

Describing how people interact with multi-agent automation and the associated

emergent allocation of function may require analysis and modelling tools that go
beyond the traditional techniques. Operator interaction with the emergent function-

ality and the non-linear dynamics of the multi-agent automation cannot be fully

understood with traditional statistics. Understanding human interaction with such

system will likely require approaches that depart from standard experimental design

and analysis of variance. Figure 2 summarizes a range of analytic approaches to
consider the dynamic interaction of operators and multi-agent automation.

The top of ®gure 2 illustrates a traditional approach, in which observations are
averaged over experimental conditions and compared with bar charts and analysis of

variance. The focus of most theories and analytic techniques in the area of decision-

making and social systems follows this static approach that ignores interactions over

Emerging challenges in cognitive ergonomics 243

Figure 2. Analytic techniques that provide a progressively comprehensive view of system
dynamics that is needed to understand the interaction between operators and the emergent
behaviour or multi-agent automation.



time. A static approach can be de®ned as one in which cognition is de®ned as symbol
manipulation and the passage of time is not considered. For example, traditional
decision making theories describe the outcome of the decision process, but not the
vacillation that accompanies most decisions (Busemeyer and Townsend 1993).
Analysis of variance techniques follow this logic and focus on static aggregations
of data without regard to how it varies across time. For example, analysis of variance
typically combines data into categories according to experimental conditions and
variations over time are simply treated as experimental error.

The middle of ®gure 2 illustrates a time series approach, where observations are
used to estimate parameters of discrete di� erential equations and plotted as a tra-
jectory over time. As an example, time series analysis techniques produced a discrete
di� erential equation that predicted reliance as a function of trust and self-con®dence.
This equation accounted for between 60±86% of the variance in operators’ reliance
on automation (Lee and Moray 1994). Beyond accurately predicting reliance, this
analysis approach shows that trust and reliance have an inertia that is critical to
understanding the factors that a� ect reliance. Speci®cally, these techniques can help
de®ne new measures of the calibration of trust and how that calibration changes over
time. The static approaches that have been used to identify miscalibration of trust
(Lee and Moray 1994) and self-con®dence (Lichtenstein and Phillips 1982,
Tomassini et al. 1982, Wright et al. 1994) only consider a snapshot in time and do
not consider changes over time. The importance of understanding how a system
arrives at a particular state suggests a need for an approach that can provide a
process model of system dynamics. As an example, Busemeyer and Townsend
(1993) provide such a model and illustrate the power of a dynamical model that
describes the behaviour of systems that vary over time. By capturing the time-depen-
dent nature, dynamical systems theory provides a powerful approach to consider
how behaviour changes over time. Time series analysis provides a ®rst step in this
direction by describing the characteristics of a typical trajectory of system variables
over time, a perspective lacking in current analysis of variance approaches.

The bottom of ®gure 2 shows a dynamical systems approach where the focus
shifts from describing a particular trajectory of behaviour to a description of the
potential ®eld that guides behaviour. Speci®cally, time progresses from top to
bottom in the ®gure and the collective variable is depicted from left to right. The
collective variable describes the state space of the joint human±automation system.
Each horizontal line depicts the probability that the system will be in any of the
states described by the collective variable. Attractor states are represented by troughs
in the lines. The deeper and steeper the trough the more stable the state. Figure 2
shows that the stability of the various attractor states changes over time. This repre-
sentation of system provides a rich description of how behaviour evolves over time,
providing a ®eld description of the probabilities of various states rather than a
description of a particular trajectory. These di� erences from traditional data analysis
and time series techniques may make a description based on attractor states and
collective variables particularly well-suited to the analysis of situations where behav-
iour depends on the con¯uence of several factors that evolve over time.

Going beyond data analysis techniques, the di� erences between traditional
analysis of variance techniques and those associated with a dynamical approach
can lead to di� erences in the underlying representation of human behaviour.
Figure 3 shows the di� erence between a computational approach, which tends to
rely upon traditional analysis of variance techniques, and a dynamical approach to
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describing cognition. A dynamical approach considers continuous change of systems
over time, whereas the computational approach considers discrete static states. The
dynamical approach capitalizes on the power of di� erential equations to represent
continuous interaction among system components over time. The dynamical systems
approach, based on attractor states and collective variables, also considers important
phenomena such as bifurcation, stability points, and phase transitions. This
approach has met with considerable success in describing motor control, but it has
only begun to be applied to cognitive and social behaviour (Shaw and Kinsella-Shaw
1988, Kelso 1995, Beer 2000, Thelen et al. 2001).

4. Constructs for describing human interaction with complex, counterintuitive
agents

Agent-based automation confronts humans with challenges not seen with current
forms of automation. Mode errors, misuse and disuse of automation could drama-
tically increase. The factors that induce mode errors with current automation include
indirect mode changes, inadequate feedback, and inconsistent behaviour (Sarter and
Woods 1992). The emergent behaviour of agent-based automation may exacerbate
all of these factors. The fundamental challenge is that agents may interact to produce
emergent behaviour that is not an intuitive extension of individual agents’ behaviour.
This emergent behaviour may be a very useful characteristic if it is properly designed
and managed; however, the challenge of anticipating emergent behaviour may pro-
mote new types of errors. For example, people may focus on micro-level behaviour
of individual agents and devote inadequate attention to macro-level behaviour.
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ena like trust in automation (Port and van Gelder 1995).



Attention must be distributed between the macro (swarm behaviour) and micro
(individual agent behaviour) levels. An improper focus on one level may allow prob-
lems to go undetected on the other. Understanding the factors that guide people to
focus attention at a particular level and what factors in¯uence their interventions in
controlling the automation may require constructs beyond those traditionally used
to describe decision making.

Operators’ attitudes toward the automation may play a major role in guiding the
users focus of attention and control strategies (Sheridan 1975, Lee and Moray 1992,
1994). In particular, trust is a sociological construct that has been used to describe
relationships between people, and much research has shown that trust is an import-
ant attitude that mediates how people rely on each other (Rempel et al. 1985, Ross
and LaCroix 1996). Just as trust in¯uences the relationships between humans, trust
may also mediate the relationship between people and the swarm of agents. A series
of experiments beginning with Lee and Moray (1992, 1994) and Muir and Moray
(1996) have shown that trust is an attitude toward automation that a� ects reliance
and can be reliably measured. Field studies of operators who are confronted with
newly installed automation have consistently identi®ed trust as a critical factor
guiding reliance on new automation (Zubo� 1988). Highly trusted automation
may be used frequently, whereas operators may choose to control the system manu-
ally rather than engage automation they distrust (Lee and Moray 1994). A series of
recent studies have shown that trust mediates reliance on many types of automation
in many di� erent domains. For example, trust was an important explanatory vari-
able in understanding how people react to imperfect tra� c congestion information in
a navigation system for a car (Kantowitz et al. 1997). Trust has also helped to
explain reliance on augmented vision systems for target identi®cation (Conejo and
Wickens 1998), pilots’ perception of cockpit automation (Tenney et al. 1998), and
control of a tele-operated robot (Dassonville et al. 1996). These results show the wide
applicability of trust in explaining people’s use of automation.

Just as trust plays an important role in mediating the relationship with more
traditional automation, trust may guide the control strategies of those supervising
agent-based automation. If people trust automation too much they will tend to
misuse the automation and rely upon it when it is not appropriate. If they trust
the automation too little then the automation may fall into disuse, preventing them
from taking advantage of its capabilities. Because of this, calibration of trust is
critical to ensure the e� ective use of automation. Accurately calibrating trust pro-
motes appropriate reliance on automation. Recent neurological evidence provides
converging evidence that emotions, such as trust, play an important role in decision
making. This research is particularly important because it suggests important meas-
ures of the calibration of trust. Damasio et al. (1996) shows that people with brain
lesions in the ventromedial sector of the prefrontal cortices retain reasoning and
other cognitive abilities, but that their emotions and decision-making ability is
critically impaired. A series of studies have carefully isolated the decision-making
de®cit and have demonstrated that it stems from a de®cit of a� ect and not from
de®cits of working memory, declarative knowledge, or overt reasoning as might be
expected (Bechara et al. 1997, 1998). The somatic marker hypothesis explains this
e� ect by suggesting that marker signals from the physiological response to the
emotional aspects of decision situations in¯uence the processing of information
and subsequent response to similar decision situations. Through the bioregulatory
process of the mind, emotions and feelings play a key role in guiding people away
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from situations in which negative outcomes are likely (Damasio 1996). In a gambling
decision-making task, those with prefrontal lesions performed much worse than a
control group, responding to immediate prospects and failing to accommodate the
long-term consequences (Bechara et al. 1994). Interestingly, in a subsequent study, a
physiological measure of a� ect, galvanic skin response (GSR), showed a substantial
response of normals to the large loss, but not in those with prefrontal cortical lesions
(Bechara et al. 1997). Interestingly, normals also demonstrated an anticipatory GSR
whenever they considered a risky alternative, even before they explicitly recognized
the alternative as being risky. These results support a strong argument that emotions
play an important role in decision-making, providing neurological evidence that
suggests that attitudes such as trust might play an important role in deciding to
rely on automation. In addition, these studies show that physiological measures,
such as GSR, might be a useful tool in evaluating the calibration of trust. Highly
calibrated people will generate an anticipatory GSR when it becomes risky to rely on
the automation, whereas poorly calibrated people will not.

Converging evidence from analysis of operator reliance on automation and from
neurological investigations into decision-making show that emotions may play an
important role in how people manage agent-based automation. This suggests that
new constructs that re¯ect the role of emotions, such as trust and self-con®dence,
need to be developed. These constructs will complement the more traditional con-
structs associated with the information-processing paradigm. Identifying, describing
and integrating these constructs into the analysis and design of multi-agent automa-
tion is a substantial challenge for cognitive ergonomics.

5. Conclusions
Function allocation and e� ective use of automation have long been important
research and design issues. Technological developments in the coming years will
challenge the cognitive ergonomics community to address increasingly complex
issues associated with these enduring problems. Speci®cally, the emergence of
multi-agent automation poses challenging problems that go beyond those experi-
enced with conventional automation. Like swarms of insects, agent-based automa-
tion may generate emergent behaviour that may also produce new error tendencies
and require additional display and control considerations. People will be faced with
challenges of emergent allocation of function and particularly important considera-
tions include:

. requirements to support monitoring and control of multi-agent automation at
the individual and swarm level; and

. requirements associated with stimergy control that may involve manipulations
of the agents or the environments the agents inhabit.

Understanding and predicting human interaction with multi-agent automation will
require new modelling and analysis approaches. Traditional analysis of variance
approaches fail to describe how systems evolve over time, a critical consideration
in describing the adaptive capabilities of agent-based automation. In particular,
dynamical systems theory may be needed to capture the emergent behaviour that
evolves over time and that would otherwise be poorly described. Important contri-
butions of a dynamical systems perspective include:
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. time series analysis techniques that describe trajectories of system behaviour in
terms of discrete di� erential equations; and

. collective variables that de®ne attractor states that evolve over time and de®ne
a ®eld of potential behaviours.

Just as cognitive ergonomics must consider new modelling and analysis techniques, it
must also consider new constructs that might complement an information processing
approach to the decision making that governs reliance on multi-agent automation.
Particularly important considerations include:

. how operators’ trust in individual and collective behaviour of the agents can be
calibrated; and

. how emerging ®ndings of neurology can be used to develop novel measures of
trust calibration.

This paper demonstrates that addressing the challenge of agent-based automation
will require a theoretical understanding of human behaviour that goes beyond a
task-based description of well-de®ned scenarios. Cognitive ergonomics must develop
an understanding of the basic cognitive demands associated with managing multi-
agent automation, tools that consider the dynamics of the interaction, and constructs
that address the dynamic decision making that governs reliance on the automation.
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