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Abstract 13 

A framework is presented and evaluated for the parameterization of smog chamber 14 

results for use in atmospheric Chemical Transport Models (CTMs).  The parameterization 15 

uses an absorptive partitioning model to describe formation of secondary organic aerosol 16 

(SOA). The key points of the framework are (1) the ability to fit results from several 17 

types of chamber experiments; (2) the use of a basis set of surrogate compounds 18 

characterized by fixed effective saturation concentrations instead of the more commonly 19 

used variable saturation concentrations; (3) calculation of uncertainties of the estimated 20 

SOA aerosol mass fractions outside of the fitted experimental range; (4) determination of 21 

the effective enthalpy.  The features of this data analysis and fitting framework are 22 

demonstrated using simulated data, and actual measurements from α-pinene ozonolysis 23 

experiments.  Representation of SOA formation using as many as eight surrogate 24 

compounds with fixed effective saturation concentrations is shown to be feasible and has 25 

advantages over simpler parameterizations.   26 
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1 Introduction 32 

Driven by the need to simulate secondary organic aerosol (SOA) formation for 33 

Chemical Transport Models (CTMs), the results of “smog” chamber studies of SOA 34 

formation have been extensively parameterized.  Early smog chamber experiments were 35 

translated into aerosol mass fractions (yields) for models by assuming a constant aerosol 36 

mass fraction for each precursor (Hatakeyama et al., 1989) or assuming independent 37 

condensation of each SOA component when its concentration exceeded its saturation 38 

value (Pandis et al., 1992).  With additional chamber experiments and theoretical 39 

investigation, it was demonstrated that SOA aerosol mass fractions of the various organic 40 

precursors are not constant, but depended on aerosol concentration in a manner consistent 41 

with equilibrium gas-particle partitioning (Odum et al., 1996; Pankow, 1994a; Pankow, 42 

1994b).   43 

With the completion of more chamber studies and the wider acceptance of 44 

absorptive partitioning theory for organic aerosol formation, a database of empirical 45 

concentration-dependent aerosol mass fractions was developed, and implemented in 46 

CTMs (Griffin et al., 1999; Lurmann et al., 1997; Odum et al., 1997; Strader et al., 1999).  47 

SOA studies have been reviewed by (Kanakidou et al., 2005; Seinfeld and Pankow, 48 

2003). 49 

Prior to about 2004, the main type of chamber SOA formation experiment gave 50 

one aerosol mass fraction (aerosol formed / hydrocarbon reacted) after several hours of 51 

oxidation and aerosol formation.  These “final aerosol mass fraction” experiments were 52 

limited in time resolution, usually by the time required to measure the precursor 53 

concentration by GC (aerosol concentration could be monitored at minute time scales 54 
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using Scanning Mobility Particle Sizers).  While real-time monitoring of VOC levels 55 

during SOA formation was available using long path FTIR, this required high 56 

concentrations of reactants.  Now that Proton Transfer Reaction Mass Spectrometry 57 

(PTRMS) is in use in several chambers, dynamic concentrations can be measured 58 

generating dozens of data points for each chamber experiment (Lee et al., 2006; Ng et al., 59 

2006; Presto et al., 2005). The applicability of dynamic aerosol mass fractions (AMF) can 60 

be evaluated by comparison with fixed AMF (Pathak et al., 2007).  Other experiments or 61 

series of experiments have been conducted to establish the relationship between 62 

temperature and SOA formation.  These include series of experiments with similar 63 

hydrocarbon concentrations, but different temperatures (Pathak et al., 2007; Takekawa et 64 

al., 2003) as well as formation at a fixed temperature followed by heating or cooling of 65 

the chamber inside a temperature-controlled room or enclosure (Stanier et al., 2007).  66 

This work attempts to synthesize all of these types of data to inform the SOA formation 67 

parameterization.    68 

Smog chamber experiments done at one temperature give no information about 69 

the temperature dependence of SOA AMF.  Product yields may vary as a function of 70 

temperature and the vapor pressures of individual products will certainly vary with 71 

temperature.  In the latter case, lower temperatures should favor higher yields.  72 

Temperature dependence is typically included in CTMs by calculating temperature-73 

dependent saturation concentrations (or partitioning coefficients) according to the 74 

Clausius-Clapeyron equation (Pankow, 1994a; Pankow, 1994b), using enthalpy of 75 

evaporation ΔH for representative semivolatile species.  This leads to a strong link 76 

between temperature dependence of SOA concentrations and the ΔH values used.  77 
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Measurements of the temperature dependence of SOA AMF are now becoming available. 78 

One goal of this work is to present a method for including the temperature dependence 79 

results into parameter fitting, and thus reduce CTM uncertainty due to lack of knowledge 80 

of the appropriate ΔH (Pun et al., 2003; Tsigaridis and Kanakidou, 2003).   81 

Two other methods for the determination of partitioning coefficients and AMF 82 

should be noted.  The first is the direct measurement of gas and particle phase 83 

concentrations through filter/denuder GC/MS techniques (Kamens and Jaoui, 2001; Yu et 84 

al., 1999).  The other is a combined kinetic and thermodynamic approach where the time 85 

series of aerosol mass and individual products is used to constrain a combination of rate 86 

constants, stoichiometric yields, and gas-particle partitioning parameters (Kamens and 87 

Jaoui, 2001).  To date, these methods have been useful at elucidating gas-phase kinetic 88 

mechanisms and product distributions, but have not been used to inform CTM modeling 89 

of gas-aerosol partitioning.  As emphasized in recent overview articles on SOA 90 

formation, representation of the full complexity of SOA formation and aging will require 91 

a combination of thermodynamic approaches (as emphasized in this work) as well as 92 

kinetic descriptions of SOA processes (Donahue et al., 2006; Kroll et al., 2007). 93 

Figure 1 illustrates many of the concepts to be explored in this paper.  The figure 94 

was created by simulating the oxidation of a VOC producing two semivolatile 95 

compounds, with temperature independent stoichiometric yields.  The absorptive 96 

partitioning equations were solved to determine the fraction of product in the gas and 97 

aerosol phases.  The aerosol phase portion contributes to the aerosol mass fraction shown 98 

as the z axis.  The goal of this work is to determine how to parameterize the AMF surface 99 

from smog chamber experimental data, including traditional final AMF, fixed-100 
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temperature experiments, variable temperature experiments, and dynamic chamber 101 

results.  Also noted in Figure 1 is the possibility that experimental data is not available 102 

across the concentration and temperature regime where the models operate.  Uncertainty 103 

bounds are critical for meaningful extension of the experimental results to CTM 104 

applications.  The uncertainty bounds need to be valid for interpolation within the 105 

experimental data, and as much as possible, for extrapolation outside of the experimental 106 

regime.   107 

The goal of this work is to refine the estimation of parameters from chamber 108 

experiments using absorption partitioning theory.  In section 2.1, absorptive partitioning 109 

is reviewed.  In section 2.2, the parameterization algorithm is presented.  Section 2.3 110 

reviews the types of chamber data that are available for fitting.  Section 2.4 defines 111 

several terms needed for discussion of the fitting and describes four sets of pseudodata 112 

used in testing the fitting algorithm.  Sections 3.1-3.4 describe the application of the 113 

fitting procedure to the pseudodata sets, while section 3.5 applies it to a combined α-114 

pinene ozonolysis dataset including multiple chambers and multiple authors. 115 

This work does not consider the parameterization of aging, heterogeneous 116 

reactions, or oligomerization.   It is limited to “prompt” aerosol mass formation from 117 

chamber experiments, which capture chemistry and partitioning occurring over 118 

approximately a 10-300 minute timescale.  The choice to leave these more recently 119 

discovered processes out of this work is not due to a belief that they are negligible or that 120 

they do not need to be eventually incorporated into CTMs.  However, the choice is 121 

justifiable on at least two grounds:  (1) a sound procedure for parameterization of prompt 122 

SOA formation and its uncertainty is a necessary building block for more advanced 123 
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schemes; and (2) widely used CTMs (e.g. CMAQ, CAMx, and GEOS-CHEM) share the 124 

absorptive partitioning framework, and thus can be modified without changing their basic 125 

structure for increased accuracy and for prediction of uncertainties on SOA formation due 126 

to limitations in the underlying chamber data.   127 

 128 

2 Methods 129 

2.1   Theoretical Basis for Semi-Empirical Fitting Equations 130 

Absorptive SOA partitioning is used throughout this work, with the following 131 

nomenclature.  The effective saturation concentration ci* is defined through the 132 

expression: 133 

 gasiii ccy ,
* ≡  1 134 

where ci,gas is the gas phase mass concentration of species i and yi is its mass fraction in 135 

the absorbing aerosol phase (yi = ci,aer / cOA).  The variables ci,aer and cOA are the aerosol 136 

mass concentration of species i, and the total absorbing organic aerosol concentration, 137 

respectively.  This is equivalent to relating effective saturation concentration to pure 138 

component vapor pressure using:  139 
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where Mi is the molecular weight of species i, MOA is the average molecular weight of the 141 

absorbing aerosol phase, ci
o is the saturation concentration and pL,i

o is the subcooled 142 

liquid vapor pressure of i. We note two advantages for this treatment of partitioning for 143 

CTM parameterizations: first, the activity coefficient is included in the effective 144 

saturation concentration, and therefore the mixture is treated as pseudoideal; and second, 145 
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the equations do not require explicit terms for molecular weight ratios of the precursor 146 

and products, and of the various products and the average organic aerosol molecular 147 

weight.  148 

The mass fraction of species i partitioned to the aerosol phase, ξi, for a single 149 

semivolatile compound in absorption partitioning is: 150 
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where ctot,i is the total concentration (gas + aerosol) of species i.  Therefore, for a mixture 152 

of semivolatile compounds, the total organic aerosol concentration is (Donahue et al., 153 

2006): 154 
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In equations 1-4, we have not made any distinction as to the source of organic material 156 

(either ctot,i or cOA) – it can be either preexisting in the atmosphere, or it can be generated 157 

from reactions or from combustion emissions.  Smog chambers are a special case, where 158 

typically all the organic mass (for all species) is generated from oxidation of the parent 159 

reactive organic gas (ROG).  Some chamber experiments are conducted with preexisting 160 

semivolatiles in the gas or aerosol phase, but they are the minority and would require 161 

minor changes to the fitting equations and parameterization algorithm.  In cases where 162 

ctot,i is solely the result of a reaction of a precursor gas:   163 

 ROGMMROGc massiROGimolariitot Δ=Δ= ,,, αα  5 164 

 In this work, all αi values are mass-based yields.  Expressing equations 3-5 for a 165 

smog chamber experiment with no preexisting organic aerosol (such that ΔcOA = cOA): 166 
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where ξ is the overall aerosol mass fraction.  Equation 6 suggests that the aerosol mass 168 

fraction can exceed unity, owing to increase in molecular weight upon reaction.  The 169 

partitioning equations (1-4) are applicable to all atmospheric absorptive partitioning 170 

calculations, while the smog chamber equations (5-6) should be reserved for cases where 171 

the assumption of zero preexisting adsorbing aerosol is met.  172 

 The term aerosol mass fraction (ξ) is used throughout instead of the term yield 173 

(yield ≡ ∆cOA/∆ROG) common in SOA literature.  This is done to reserve the term yield 174 

for product yields (αi) and avoid confusion between product yields αi and aerosol mass 175 

fraction (AMF or ξ).  For comparison to previous works, the substitution yield ≡ 176 

∆cOA/∆ROG = ξ can usually be made.  As pointed out by Presto and Donahue (2006) 177 

there is uncertainty on the density of organic aerosols.  Aerosol mass concentration is 178 

often measured by combining the measured aerosol number distribution by a scanning 179 

mobility particle sizer with the assumption of sphericity and an assumed density (often 180 

unity).  Thus, application of equation 6 to both atmospheric prediction and to 181 

experimental data reduction requires careful treatment of density.  The relevant density 182 

correction equations are in the appendix.  In this work, all yields are calculated using 183 

assumption of aerosol density of 1 g cm-3.     184 

The partition coefficient Kom,i (units μg-1m3) can be used interchangeably with the 185 

effective saturation concentration, with the equation for interconversion as:   186 

 *
,
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1
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A typical procedure (Cocker et al., 2001; Griffin et al., 1999; Odum et al., 1996) for data 188 

reduction of chamber experiments is to use equation 6 to regress smog chamber data 189 

(pairs of cOA and ξ) to fit either 2 parameters (e.g., a single αi and saturation concentration 190 

c*
i) or 4 parameters (e.g., a pair of αi values with corresponding saturation 191 

concentrations).     192 

 When aerosol mass fractions are needed at different temperatures, the Clausius-193 

Clapeyron equation is used to adjust the effective saturation concentrations.   194 
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where Tref is a reference temperature where a reference effective saturation is defined, and 196 

ΔHi is the enthalpy of evaporation.  There is considerable uncertainty regarding the value 197 

of ΔH to use in this equation (Bian and Bowman, 2002; Stanier et al., 2007; Strader et al., 198 

1999; Tsigaridis and Kanakidou, 2003).  One approach (which usually gives to strong of 199 

a temperature response) is to use the few known ΔH values of identified SOA 200 

components.  201 

 202 

2.2 Parameterization Algorithm 203 

The parameterization strategy is to determine values of ci*, αi, and ΔHi so that 204 

aerosol mass fractions (AMF) predicted by equations 6 and 8 match experimental values 205 

as closely as possible.  This is done by nonlinear least squares regression.  The actual 206 

regression is straightforward, but there are several challenging issues related to the 207 

parameterization: (1) selecting the number of basic set compounds (n) to use, (2) deciding 208 

whether to use fixed or variable effective saturation values, (3) estimating the 209 
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temperature sensitivity accurately (or at all), and (4) estimating confidence intervals 210 

across the range of cOA and temperature values anticipated in the CTM application.  An 211 

overview of the procedure is shown in Figure 2.   212 

 213 

2.2.1 Selection of extreme values of c* 214 

Equations for selecting extreme values of c* are derived in the appendix.  They depend 215 

on the accuracy goals, organic aerosol concentrations, and temperatures of the expected 216 

CTM application.  For c* values referenced to 298 K (25°C) the equations are: 217 
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where δ is the allowable error (μg m-3) in the semivolatile partitioning calculation under 220 

clean conditions, Tmin and Tmax are the temperature limits of CTM modeling application, 221 

and f is the maximum fractional error in the parameterization at high concentration (e.g. 222 

0.1 for ±10% allowable organic aerosol concentration).  Some values from equations 9 223 

and 10 are given in Table 1 for ΔH / R of 12,000 K.  For the α-pinene cases examined in 224 

the results and discussion section, it turns out that this choice is overly conservative, and 225 

a value of 4,000 K will suffice. 226 

 227 

2.2.2 Selection of number of c* values 228 

A priori specification of the number of c* values (including c*min and c*max) 229 

required for a suitable fit and for confidence interval characterization is difficult. A 230 

practical approach is to space the c* values on a lognormal basis (e.g. 0.01, 0.1, 1, … 103, 231 
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104, 105 μg m-3) and thus the number of elements in the basis vector is determined by the 232 

spacing between c*min and c*max.  The regression calculation is quick and can be repeated 233 

easily with a different basis, so trial and error selection of the c* basis set is feasible.  234 

From doing the fits for this work, we recommend: 235 

 ( ) 1log *
min

*
max10 +≈ ccan  11 236 

where a is from 0.5 to 1.0.  There exist cases where the experimental data can be fit with 237 

a small basis set (e.g. n = 1 or 2).   This will be true especially when the data have a small 238 

dynamic range in terms of cOA values.  When equation 11 gives a large recommended 239 

basis set but one or two well selected c* values are sufficient to fit the experimental data, 240 

the additional parameters are still necessary for calculating uncertainty when the 241 

parameterization is extrapolated outside the range of the underlying experimental data.   242 

 Although the current work is limited to fitting AMF (and not a full mass balance 243 

for the SOA formation chemical reaction) the use of a suitably large basis set may have 244 

further utility in tracking the mass balance, secondary reactions, aging, and atmospheric 245 

fate of biogenic and anthropogenic ROG emissions (Donahue et al., 2006; Robinson et 246 

al., 2007).   247 

  248 

2.2.3 Regression 249 

The objective function minimized during regression is  250 

 ( )[ ]2
..1

* ,,),(,,ˆ∑
=

Δ−=
mi

OArefrefii TcTTcHOF αξξ  12 251 

where ξ are the measured AMF (m data points) and ξ̂ are the modeled AMF calculated 252 

using equations 6 and 8.  The modeled AMF are calculated using fixed parameters (Tref), 253 



   

 12

and experimental variables cOA and T.  The adjustable parameters are αi, a single ΔH 254 

(instead of n ΔHi values).  Fixed saturation concentrations ci* are used in this work, but 255 

they can also be adjustable parameters if n is small.   256 

The fact that the AMF is linear in the adjustable parameters αi (Equation 6) 257 

greatly speeds up the calculations.  At any step in the regression (and for any value of 258 

ΔH), the best set of αi can be computed by solving the following equation subject to yield 259 

non-negativity constraints: 260 
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0≥iα  262 

Because of this feature, nonlinear minimization is performed for only ΔH.  In this 263 

work, the Levenberg-Marquardt method implemented in MATLAB’s lsqnonlin function 264 

(MathWorks, 2002) is used for the nonlinear minimization and the MATLAB function 265 

lsqnonneg is used for the nonnegative least squares problem.   The regression calculation 266 

is not sensitive to initial guesses and takes a few seconds for fixed ci* values, with n=8 267 

and hundreds of datapoints.   The goodness of fit will be characterized using the metrics 268 

shown in Table 2. 269 

Initial confidence intervals are calculated using the asymptotic confidence interval 270 

method (Seber and Wild, 2003) as implemented in MATLAB’s nlpredci function.  The 271 

uncertainty bounds are calculated without using the constraints that there are physical 272 
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upper and lower limits to AMF.  Therefore, far enough from the data, the inherent 273 

multicollinearity in the basis set manifests itself as unreasonably high and low values of 274 

the confidence intervals.  These are truncated using the logic that AMF cannot decrease 275 

with increasing cOA (at constant temperature), that AMF cannot increase with decreasing 276 

cOA (at constant temperature), and that AMFs have both lower (zero) and upper (~1.5) 277 

limits.   278 

This approach often leads to wide nonphysical confidence intervals when 279 

extrapolating outside the experimental range. Therefore, a second method of calculating 280 

confidence intervals is employed: repeated random (Monte Carlo) sampling of selected αi 281 

values. The basic idea is that the experimental data may poorly constrain certain yields 282 

associated with low volatility (low c*) and high volatility (high c*) elements in the basis 283 

set.  Therefore, the yields for these compounds are selected randomly while the 284 

remaining αi’s are fit to the experimental data.  The algorithm for the Monte-Carlo 285 

confidence intervals is included in an appendix.  Random sampling is done in large 286 

(~1000) simultaneous trials with either 1, 2 or 3 random αi’s.   Random sampling is 287 

stopped when change in the confidence intervals is smaller than a preset tolerance. This is 288 

the slowest part of the overall parameterization code.  1000 trials require ~1 second using 289 

MATLAB’s lsqnonneg routine on 2.1 MHz PC with 2 GB RAM (this is while estimating 290 

confidence intervals with 300 points in the cOA vs. T space).  The trials need to be 291 

repeated from 2-20 times for each value of ΔH explored, so exploration of the confidence 292 

intervals using 10 values of ΔH can take 1-2 CPU minutes. The combination of these 293 

techniques for different cases will be discussed in subsequent sections. 294 

 295 
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2.3 Description of Data Used in Fitting 296 

Data used in this work to parameterize SOA AMF fall into three categories.  The 297 

first category is the traditional fixed-temperature smog chamber AMF experiment.  In 298 

these experiments, the AMF of secondary organic aerosol (defined as the mass of created 299 

aerosol divided by the mass of reactant consumed) is measured after the reactive organic 300 

gas is oxidized in a large chamber.  The relative humidity and concentration of 301 

preexisting aerosol is controlled.  Temperature may be controlled or uncontrolled, 302 

although a single temperature is usually recorded corresponding to the temperature at the 303 

time when the AMF estimate is made.  A series of experiments is usually completed 304 

according to a design to provide variation in reactant concentration, cOA, and or 305 

temperature. Oxidation is by OH, O3, or NO3.  O3 can be injected directly from a corona 306 

discharge source, or photochemical oxidation can be initiated from NO2 photolysis.  If 307 

ozonolysis is the targeted process, an OH scavenger such as 2-butanol can be included in 308 

the chamber in excess. As discussed in the review by Kanakidou et al. (2005) (Kanakidou 309 

et al., 2005), there is a large body of literature data based on experiments of this type for 310 

various precursor-oxidant combinations.  These types of experiments are referred to as 311 

static, final AMF, or traditional smog chamber experiments.  312 

A second category of data available for fitting is from chamber experiments 313 

where VOC concentration can be monitored rapidly using PTRMS and aerosol 314 

concentrations are measured at minute time scale by SMPS (Presto and Donahue, 2006; 315 

Presto et al., 2005).  Therefore, a time series of cOA, ΔROG, AMF, and temperature is 316 

generated.   317 
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A third category of data available for fitting is from chamber experiments that 318 

include a change in temperature following aerosol formation.  This is done solely for the 319 

purpose of assessing the temperature sensitivity of aerosol partitioning.  Rather than 320 

compare two experiments at different temperatures (each with independent uncertainties 321 

that complicate  attributing changes in AMF to ΔT), the ramp or step change in 322 

temperature allows direct observation of the change in partitioning.  The technique is 323 

called TREVA (Temperature-Ramped Equilibrium Volatility Analysis).  Results are 324 

available only for the α-pinene-ozone and β-pinene-ozone systems (Pathak et al., in press, 325 

2007; Pathak et al., 2007; Stanier et al., 2007). 326 

Data from all three of these experiment types is used in the final section of the 327 

results and discussion to parameterize AMF and uncertainty for α-pinene ozonolysis.  328 

The specific datasets are listed and referenced in Table 3.  Individual datapoints used in 329 

fitting are listed in a supplemental data section.   330 

 331 

2.4 Nomenclature and Description of Synthetic Data Used in Fitting 332 

Synthetic data, also called pseudodata, is useful for demonstrating that the fitting 333 

procedures work and assessing specific strengths and weaknesses of the parameterization 334 

strategy.  Values of αi, c*i, and ΔHi are used to simulate AMF experiments, generating 335 

synthetic (pseudo) data as datapoints with values of cOA, ξ, and T.   These can be 336 

simulated with random error and bias if desired.  We will use the following terminology: 337 

• Underlying model: the αi, c*i, and ΔHi used to generate synthetic data 338 

• Ideal AMF:  ξ calculated from the underlying model 339 

• Synthetic data or pseudodata:  data (ξ, temperature, and cOA) used in regression 340 
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• Predictions or regression predictions:  AMF ( ξ̂ ) calculated according to the 341 

regression output.  For pseudodata cases, regression predictions are compared to 342 

synthetic data, where agreement is expected, and to ideal data, where agreement is 343 

not necessarily expected and will depend on many factors.   344 

• Regression model: the structure (equation 6) and parameters for 345 

( )TcTTcH OArefrefii ,,),(,,ˆ *Δαξ .  The adjustable parameters are αi (n values) and ΔH.  346 

Tref is a fixed parameter (set to 298 K for this work).  cOA and T are the 347 

independent experimental variables.   348 

• Basis set or basis vector: the fixed values of ci* used in a regression model. 349 

• Parameterization applicability domain (also model domain): the expected range 350 

of cOA and temperatures where the parameterization will be employed.   351 

• Experimental domain: range of cOA and temperatures in the experimental or 352 

synthetic data.   353 

• Temperature sensitivity: the change in aerosol concentration with temperature due 354 

to semivolatile partitioning, expressed as ( ) TcOA ∂∂ ln  with units of K-1.  For SOA 355 

from α-pinene ozonolysis, this is expected to be ~ -0.004 to -0.036 K-1  (Stanier et 356 

al., 2007).  For consistency, all temperature sensitivity values in this work are 357 

calculated at 40 μg m-3 and 20°C.    358 

The ideal models and synthetic data experiments used in this work are described in Table 359 

4.  Two underlying models are used to generate four sets of pseudodata.   360 

 A 2-product underlying model is used to generate sets A, B1, and B2.  In 361 

pseudodata set A, the sequence of hypothetical experiments includes 19 chamber final 362 

AMF experiments, with experimental cOA values from 7-525 μg m-3 and temperatures 363 



   

 17

from 26 to 37°C.  Experiments are assumed to have very low independent random error 364 

in determination of ∆ROG such that the coefficient of variation (CV=σ/mean) on ∆ROG 365 

from repeated smog chamber experiments would be 0.007.    366 

In pseudodata set B1, 21 final AMF experiments are simulated and they are 367 

assumed to come from 3 separate series of chamber experiments.  The first series of 368 

experiments is 10 experiments, all at 26°C.  They are assumed to have random error such 369 

that CV=0.02, but they are also assumed to have a series-specific bias of +10% in 370 

measured AMF (e.g. true AMF of 0.2 would be sampled as 0.22).  The second series of 371 

experiments is 6 experiments, all at 37°C.  They are assumed to have random error such 372 

that CV=0.02, but they are also assumed to have a series-specific bias of -10% in 373 

measured AMF.  A third series of experiments is 5 experiments at the same fixed ∆ROG, 374 

but each at a different temperature, from 17-37°C.  They are assumed to be free of 375 

systematic error but have random error such that CV=0.02. 376 

In pseudodata set B2, the pseudodata experiments from B1 are supplemented with 377 

5 temperature ramp experiments, where the AMF is measured at 5 different temperatures 378 

as the chamber is heated or cooled.  The data is assumed to be noisy, and to have 379 

correlated errors.  Specifically, each of the 5 experiments is assumed to have a bias 380 

shared by all 5 datapoints, associated with the determination of the ∆ROG for that 381 

experiment.  This is generated randomly such that the CV=0.06.  The details of the 382 

hypothetical experiments are that each experiment gives 5 AMF datapoints at 383 

temperatures ranging from 22 to 39°C.  Each datapoint was generated with an additional 384 

independent error, corresponding to a CV=0.03.   385 
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In pseudodata set C, a much more complex physical mixture is assumed, with 14 386 

products with c* values ranging from ~10-2 μg m-3 to ~104 μg m-3.  No single SV 387 

component was dominant, but the most prominent three had yields (αi) of 0.09, 0.042, 388 

and 0.03 at c* values of 10-0.2, 100.7 and 102.6 μg m-3, respectively.  Two of the fourteen 389 

had yields of less than 0.005.  A full list is given in table 4.  The pseudodata comprising 390 

dataset C are sampled in a very similar sequence of experiments as in set A.  19 simulated 391 

experiments, with low random error (CV=0.007), no systematic error, spanning min/max 392 

cOA values of 7 and 525 μg m-3, and including temperatures from 26 to 37°C.     393 

 394 

3 Results and Discussion 395 

3.1  Ability to Fit Synthetic Data  396 

Following the flowchart in figure 2, there are 3 separate steps before any 397 

calculations begin.  The first requirement is experimental data.  For this demonstration, 398 

pseudodata set A is used, where 19 pseudo-experimental data points have been sampled 399 

from an underlying 2 product model (see also section 2.4).   400 

The second requirement is a basis vector of c* values to be used in the fit; the 401 

basis vector needs to be consistent with the CTM model domain, as described in section 402 

2.2.  For this demonstration, we assume the model domain is: 0-40°C; cOA,max of 25 μg m-403 

3, acceptable error (δ) of 0.07 μg m-3 in SOA partitioning under very clean conditions, 404 

and an acceptable error of 1.25 μg m-3 (f·cOA,max with f=0.05) in SOA partitioning under 405 

very polluted conditions.  This set of values (listed in Table 1) is requires (equation 9 and 406 

10) c*min of 0.01 μg m-3 and c*max of 105 μg m-3. Equation 11 puts n at 4-8.  The choice of 407 

8 corresponds to a decadal spacing (0.01, 0.1, 1, 10, 100, 103, 104, 105 μg m-3). 408 
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The third requirement is to form vectors to represent the model domain as a p x j 409 

grid of cOA  and temperature values.  The grid needs to have enough points so that 410 

curvature in the AMF surface can be suitably represented.  In this work, we use 20 values 411 

of cOA (p=20) and repeated all calculations at 5 different temperatures (0, 10, 20, 30 and 412 

40°C).  Therefore, an output of the algorithm will be AMF estimates and confidence 413 

intervals at the p x j points.  Finally, a vector of ∆H values is required for probing the 414 

uncertainty limits.  In this work, we test values ranging from 10 to 120 kJ mol-1 in 5-15 kJ 415 

mol-1 increments.  For most datasets, several of the extreme values cannot fit the data 416 

under any choice of αi.  Therefore, for a final fit, a narrower range of more tightly spaced 417 

∆H vector may give the widest uncertainty bounds.   418 

With those three items set, the optimization and the determination of the 419 

confidence intervals can proceed.  The result for the basis c* vector (0.01, 0.1, 1, 10, 100, 420 

103, 104, and 105 μg m-3) is shown in Figure 3.  The regression lines (thick solid lines) go 421 

through the data very well (the mean absolute fractional error is less than 1%).  The 422 

uncertainty bounds (grey) are narrowest where there is the most data (30°C) and become 423 

wider away from the data.  The underlying model included two SOA species with ΔH 424 

values of 80 and 60 kJ/mol.  The regression estimated a ΔH value of 77 kJ mol-1.  The 425 

fitted α values were (0; 0; 0.027; 0.097; 0; 0.069; 0.25; 0.25).   The ideal AMF (narrow 426 

dotted lines) are encompassed within the confidence intervals for nearly the entire 427 

parameterization applicability domain (88 percent of the ideal AMF fall within the 428 

confidence intervals).  The uncertainty bounds are output not as a parameterized function, 429 

but rather as an array with a value for the upper and lower CI at each of the p x j aerosol-430 

temperature combinations.  The confidence intervals are small in parts of the model 431 
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domain, reflecting the high precision in the pseudodata.  In Figure 3, and in all 432 

subsequent figures of the same style, the experimental data is shifted to the nearest 433 

temperature line using a preset temperature sensitivity of -0.015 K-1.  For fitting, the data 434 

is fit at its actual temperature – the shift is only so that the data can be summarized in one 435 

AMF vs. cOA plot. 436 

 437 

3.2 Exploring Goodness of Fit vs. Basis Set Selection 438 

To explore the relationship between the choice of the basis set and the quality of 439 

the parameterization, we now repeat the fit of pseudodata set A with different basis 440 

vectors, varying the number of elements in the basis vector, their spacing, and the 441 

extreme values of the basis set (c*min and c*max).  The pseudodata are unchanged; only the 442 

basis vectors are changed.  The choices are then compared on the basis of goodness-of-443 

fit, fraction of data within confidence intervals, and confidence interval width.   444 

The results are shown in Figures 4 and 5.  Five different fits with basis vector 445 

length 2 (n=2 fits) were done.  These are denoted in Figure 4 as entries 2a-2e.  Four 446 

different n=3 fits were included in the comparison (3a-3d), as well as 2 n=4 fits (4a, 4b).  447 

Single fits were done at n=5, 6, 7, 8, and 9, respectively.  The n=5-7 cases had lognormal 448 

spacing between 0.01 and 1,000 μg m-3.  The n=8 fit is repeated from section 3.1.  The 449 

n=9 fit has lognormal spacing from 0.01 to c*max to 105 μg m-3.  Figure 4 has performance 450 

statistics for all 16 of these cases.  Figure 5 shows AMF vs. cOA plots for 4 of the 16 451 

cases. 452 

On the y axis of figure 4a is a goodness-of-fit of the regression prediction relative 453 

to the synthetic data (black bars) and to the ideal AMF (white bars).  The plotted error is 454 
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the mean error fraction, errfrac (see table 3).  For example, a prediction of 0.18 AMF 455 

versus a data point of 0.20 is expressed as a 10% error in Figure 4a.  Figure 4b graphs the 456 

percentage of the true AMF across the entire domain that fall within the confidence 457 

intervals.   Figure 4c shows the width of the confidence intervals at 4 specific points in 458 

the system.  One point (30°C, 26 μg m-3, triangle symbols) is right in the heart of the 459 

pseudodata.  One would expect the narrowest CI for that portion of the regression.  460 

Another, (30°C, 7 μg m-3, circle symbols) is within the data, but just barely.  Two points 461 

represent the extrapolation in temperature (10°C, 26 μg m-3) and in temperature and 462 

concentration (10°C, 7 μg m-3).   463 

Several conclusions can be drawn from Figures 4 and 5.  First, low n (2-3 464 

components in the basis vector) fits are variable in goodness-of-fit relative to the data.  465 

As shown in Figure 4a (fits 2a-3d), some basis sets lead to good fits, while other fail 466 

badly.  On the other hand, using an n=2 basis vector for estimating confidence intervals 467 

on the regression gives poor results regardless of the c* values. The fraction of ideal 468 

model points falling in the confidence intervals (Figure 4b, fits 2a-2e) is fairly low, while 469 

the size of the confidence intervals is highly dependent on the goodness of fit, varying 470 

from unreasonably narrow (2a) to very wide (2c).  The variability in the regression results 471 

is reinforced by the n=2 and n=3 panels of Figure 5; the goodness-of-fit and the width of 472 

the confidence intervals show extreme variability, depending on the exact choice.  473 

In case 2a, the c* values selected correspond exactly to the values in the 474 

underlying model.  Therefore, the data are fit very well, giving the lowest value of the 475 

objective function of all the cases in figures 4 and 5.  However, the excellent fit coupled 476 



   

 22

with the fact that there are no poorly constrained regression parameters gives very narrow 477 

confidence intervals.   478 

The second point to draw from figures 4 and 5 is that the regression results 479 

improve in quality and consistency when a basis vector with n ≥6 and appropriate c*min 480 

and c*max are used.  The exact choice of individual c* values becomes much less 481 

important as n increases to values of 6 and higher.  In all the n ≥6 cases, the errors 482 

relative to the data and pseudodata are small.  The fraction of ideal points within the 483 

confidence intervals are reasonable, and the uncertainty in the prediction is smallest in the 484 

heart of the data, and grows larger as the degree of extrapolation increases.  AMF vs. cOA 485 

plots can be seen with uncertainty bounds for the n=6 case (Figure 5) and the n=8 case 486 

(Figure 3).     487 

 488 

3.3  Temperature Sensitivity and ∆H 489 

In some fitting applications the data will constrain the temperature sensitivity of 490 

aerosol concentrations.  In other words, in a plot such as Figure 3, the AMF will be 491 

equally well predicted at a range of different temperatures.  Pseudodata set A is, for the 492 

most part, able to constrain the change in AMF with temperature.  For example, the n=7 493 

regression recovers a temperature sensitivity of -0.022 K-1.  The temperature sensitivity 494 

of the underlying model at the same point is -0.021 K-1.  The reason for this good 495 

agreement is that the pseudodata includes data from a range of temperatures, there is no 496 

correlation between error and temperature, and random errors are small.  The fitted ∆H 497 

value (77 kJ mol-1) is in agreement with the underlying model (60 and 80 kJ mol-1), as 498 

explained in section 3.1.  Furthermore, in pseudodata set A, the ∆H value is tightly 499 
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constrained, with a standard error of ~3 kJ mol-1 and visible deterioration of the goodness 500 

of fit when ∆H is reduced from 77 to 60.   501 

 In still other scenarios the data will not constrain temperature sensitivity.  This 502 

can occur when all data were sampled within a narrow temperature range.  In that case, 503 

the confidence intervals will be narrow at temperatures with data, and increasingly wide 504 

at other temperatures.  Or the cause can be excessive random error in the data masking 505 

any temperature signal.  This should lead to wide confidence intervals at all temperatures.  506 

Another possibility is that correlations between error and temperature lead to an incorrect 507 

apparent temperature sensitivity in the data.   508 

 To illustrate the case of incorrect apparent temperature sensitivity, a pseudodata 509 

set B1 was generated.  In pseudodata B1, a hypothetical series of experiments at 29 °C 510 

has AMF 10% higher than their true values (e.g. 0.11 instead of 0.10).  Another 511 

hypothetical series of experiments at 37 °C reports AMF 10% lower than their true 512 

values.  The underlying model has SOA ΔH values at 80 and 60 kJ/mol, and the true 513 

underlying model temperature sensitivity is -0.021 K-1.  The regression result is shown in 514 

Figure 6a.  As expected, the regression predictions are incorrect in terms of temperature 515 

sensitivity; the recovered ΔH value is too low (40 kJ mol-1) and the temperature 516 

sensitivity of the regression prediction is -0.019 K-1.   517 

 518 

3.3.1  Using “Temperature Ramp” Chamber Experiments 519 

 One method of overcoming poorly constrained temperature sensitivity is through 520 

repeated smog chamber experiments at different temperatures (Pathak et al., 2007).  521 

However, the number of experiments may need to be fairly large (>15) to overcome 522 
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random error between chamber experiments.  Another type of experiment design is a 523 

temperature ramp design, where a temperature controlled smog chamber is heated or 524 

cooled quickly (minutes)  after initial SOA formation (Stanier et al., 2007).  This has the 525 

advantage of minimizing the effect of experiment-to-experiment noise in measuring the 526 

temperature sensitivity.  This type of experiment was included in pseudodata set B2.  Set 527 

B2 is identical to B1 except that 5 temperature ramp experiments, each generating 5 528 

datapoints, are added to the 19 experiments already in set B1.  Figure 6b shows how the 529 

regression result when set B2 is fit.  The temperature ramp experiments, although noisy 530 

compared to the original data, meet the objective of improving the estimation of the 531 

temperature sensitivity.   The regression shown in figure 6b has a temperature sensitivity 532 

of -0.022 K-1 and a regressed ΔH value of 67 kJ/mol.   533 

 Similar results to figure 6 were obtained by reversing the biases in the 29 and 534 

37°C data series.  In the above paragraphs and in Figure 6, the lower temperature data 535 

was biased high while the higher temperature data was biased low, leading to an apparent 536 

low temperature sensitivity.  If the biases are reversed, the apparent temperature 537 

sensitivity becomes large compared to the ideal temperature sensitivity of the underlying 538 

model.  For example, with the true temperature dependence the same as above (-0.021 K-539 

1), the initial regression’s value is -0.034 K-1.  Once the temperature ramp data is added, 540 

the sensitivity goes to -0.024 K-1. 541 

 Volatility TDMA experiments (An et al., 2007; Offenberg et al., 2006; Philippin 542 

et al., 2004) may also be suitable for this type of analysis, as long as equilibrium is 543 

achieved in the flow setup. 544 

 545 
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3.3.2  User Specified Limits on Temperature Sensitivity 546 

If the CTM modeling results are sensitive to temperature effects on partitioning, 547 

then realistic temperature sensitivity and confidence intervals are highly desirable.  If no 548 

experimental data is available as a constraint, then suggested limits are (based on α-549 

pinene SOA) ∂ln(cOA)/∂T of 0 to -0.04 K-1 (Stanier et al., 2007).  Bracketing temperature 550 

sensitivity is preferred over the simpler approach of just limiting the ∆H value used 551 

equation 6 to a preset range.  The reason for this is that the value of ΔH required for a 552 

certain temperature sensitivity depends on the basis vector selection and aerosol 553 

concentrations. At least two methods exist for using artificial limits on temperature 554 

sensitivity.  One is to simply check confidence intervals for adherence to the user selected 555 

temperature sensitivity, and to narrow confidence intervals appropriately.  The other is to 556 

include artificial data in the fitting itself. 557 

 558 

3.4  Pseudodata Set C – Complex Mixture 559 

 The underlying model for sets A and B was relatively simple, with only 2 SOA 560 

products.  Actual organic aerosols, even for single precursors, are much more complex.  561 

In case C, the SOA mixture is assumed to have 14 components with c* values ranging 562 

from ~10-2 μg m-3 to ~104 μg m-3.  No changes to the algorithm or procedures are 563 

required.  The result of the fitting algorithm is shown in Figure 7.  A basis vector of 8 564 

lognormally space c* values (from 0.01 to 105 μg m-3) was used to perform the 565 

regression.  The fit results (error relative to data, relative to underlying model, 566 

temperature sensitivity, and confidence intervals) are quite good.  The mean absolute 567 

fractional error for prediction of the datapoints is less than 0.02.  All of the ideal model 568 
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values are within the confidence intervals.  The underlying model temperature sensitivity 569 

is -0.026 K-1 and the regression temperature sensitivity is -0.022 K-1 (with a fitted ∆H of 570 

56 kJ mol-1).   571 

 One-to-one mapping of the ideal to the fitted yields (α values) is not expected at 572 

the individual basis vector level.  Nevertheless, broad agreement is seen when ideal and 573 

fitted yields are compared.  When mapped to the mapped to the nearest c* value, the true 574 

yields would be:  [ 0.002 0 0.04 0.07 0.04 0.11 0.02 0 ].  The corresponding fitted values 575 

are: [ 0 0 0.09 0.03 0.09 0.14 0 0 ].  Grouping into four bins instead of eight, the 576 

comparison is closer: true yields at [ 0.002 0.11 0.15 0.02 ]  and fitted yields at [ 0 0.12 577 

0.14 0 ].     578 

   579 

3.5  Fitting α-pinene ozonolysis data 580 

We now demonstrate the fitting algorithm on real data.  The fitting is very similar 581 

to the pseudodata cases presented above.  The main differences are that the dataset is 582 

larger, that the data somewhat noisier, and that new types of possible input data are 583 

included (final AMF experiments, dynamic AMF experiments using PTRMS, and 584 

temperature ramp experiments).    585 

 586 

3.5.1  Demonstration algorithm on large α-pinene ozonolysis dataset 587 

The data used for fitting is summarized in Table 3, and individual datapoints are 588 

listed in the appendix.  For the model applicability domain the “general” model case from 589 

Table 1 was selected (0.1-60 μg m-3 with a temperature range from 0-40°C).  While table 590 

1 (based on equations 9-11) recommends a c*min and c*max of 1x10-3 and 2.4x105, 591 
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respectively, these are calculated based on a single component with ΔH of 100 kJ mol-1 592 

(see appendix for derivation), and the real aerosol does not have nearly that temperature 593 

sensitivity.  Therefore, a narrower range might be employed.  This necessary range was 594 

tested by fitting with basis vectors of length 9 (10-3 to 105), length 7 (10-2 to 104), and 595 

length 5 (l0-1 to 103).  The fits and confidence intervals were nearly identical for the n=7 596 

and n=9 cases.  However, the confidence intervals change somewhat in the n=5 case.  597 

Specifically, the confidence intervals narrowed at low and high concentrations from the 598 

removal of the 0.01 and 10,000 μg m-3 entries in the basis set.  Therefore, all of the fits in 599 

section 3.5 utilize an n=7 basis set with decadal c* values from 10-2 to 104 μg m-3.  600 

Because many of the experimental cOA values are greater than the upper limit of the 601 

model applicability domain, the plots for this section will be extended to 200 μg m-3.   602 

The fitting result for the n=7 case is shown in Figure 7.   The mean absolute 603 

fractional error is 0.08.  In other words, the average error on an AMF of 0.2 is ±0.016.  604 

From the plot, it can be seen that the source of this fitting error is the variability in the 605 

data itself.  There is obvious variability in the experiments, and some bias between the 606 

different series of experiments.  The yield values (for c* = 10-2 to 104 μg m-3) are [0 0 607 

0.073 0.072 0.087 0.29 0.29] where the 0.29 values at α6 and α7 are user-selected upper 608 

limits (the data is not sufficient to constrain the most volatile component yields).   Fitted 609 

ΔH is 33 kJ mol-1 and temperature sensitivity was -0.02 K-1.  The largest confidence 610 

intervals occur under two conditions:  at less than 1  μg m-3, and also at temperatures 611 

below 20°C.  The cause of both of these areas of large uncertainty is a relative scarcity of 612 

data.    613 

3.5.2  Removing correlated data in highly time-resolved data 614 
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The use of PTRMS to track the reacting VOC concentration, and the use of SMPS 615 

or aerosol mass spectrometers can generate multiple data points per experiment.  The two 616 

PTRMS experiments fit in this section have 38, and 89 datapoints, respectively.  The 617 

Durbin-Watson test, a test for serial correlation in the residuals, is performed by first 618 

fitting a basis vector of length 7 to the data for the PTRMS experiment in question only.  619 

The residuals from this fit are used in the Durbin-Watson test (Hamilton, 1992).  In one 620 

of the 2 cases, the 38 residuals were determined to not be correlated.  In the other, the 621 

Durbin-Watson test did indicate excessive correlation.  This was removed by averaging 622 

successive data points (starting with those contributing most to the Durbin-Watson score) 623 

until either the test was passed, or the number of data points was reduced to 15.   624 

3.5.3  Response of confidence intervals to key data 625 

Figure 9 shows the result when only a subset of data is fit.  The data that is used is 626 

that of Cocker, 2001.  This data was selected because all of the samples are at 29±1°C.  627 

Therefore, not surprisingly, extrapolation to different temperatures gives significant error.   628 

The best fit ΔH and temperature sensitivity for this dataset are 10 kJ mol-1 and -0.010 K-1.  629 

The uncertainty bounds are determined by the range of allowed ΔH values in the Monte 630 

Carlo sensitivity study.  Those shown are for limits of 5 and 120 kJ mol-1.  A wider 631 

allowed range would give even wider confidence intervals for the temperatures other than 632 

29±1°C.  For example, setting ΔH to 120 kJ mol-1 gives a temperature sensitivity of in 633 

this case at 20°C and 40 μg m-3 of -0.046 K-1.   634 

Two conclusions can be drawn from figure 9.  First, the confidence interval 635 

algorithms used here respond in the correct qualitative fashion as key data are 636 

added/subtracted to the dataset.  Second, extending the temperature range and/or 637 
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temperature sensitivity of AMF measurements is just as necessary for reduction in overall 638 

uncertainty as is extending the concentration range.  Figures 8 and 9 are directly 639 

comparable and show the effect of the increase in the range of data on the uncertainty 640 

bounds.   641 

   642 

3.6  Discussion of application to Chemical Transport Modeling 643 

The paper and algorithm have focused on leaving the basis set selection flexible, to be 644 

varied as needed according to the demands of the expected model application (e.g. Tmin, 645 

Tmax, cOA,min, cOA,max, and allowable errors in partitioning).  If followed literally, that idea 646 

could lead to a proliferation of data reductions, each tailored to a specific model domain; 647 

that is not a direction advocated by the authors.  Rather, the key concepts from this work 648 

that should translate to improved modeling are (1) mismatches in the fitting basis vector 649 

and model organic aerosol concentrations and temperatures can have undesirable 650 

consequences; (2) realistic confidence intervals on aerosol mass fraction are possible; (3) 651 

multiple experiment types can be integrated to give improved parameterization; (4) 652 

comparisons of aerosol mass fractions (measurements, predictions, and confidence 653 

intervals) and temperature sensitivity are much more informative that comparisons of 654 

regression parameters (αi, c*i, and ΔH); and (5) high n fixed c* basis vector fits are 655 

feasible and useful.   656 

 A practical method of achieving the improved modeling results may be for wider 657 

adoption of a decadal basis set including "nonvolatile" (c* < 0.1 µg m–3), "semivolatile" 658 

(SVOC; 0.1 µg m–3 < c* < 1000 µg m–3), and "intermediate-volatility" (IVOC; 1000 µg 659 

m–3 < c* < 100,000 µg m–3) organic compounds.  In other words, the n=8 basis set with 660 
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c* from 10-2 to 105 µg m–3.  In this work, the n=8 set proves more than suitable for fitting 661 

the existing α-pinene ozonolysis data, and for spanning simulated SOA partitioning data 662 

across realistic ranges of temperature and organic aerosol concentration.   663 

 For modeling applications where a reduced n is desirable, (e.g. a global model) 664 

the n=8 regression results can be translated to a reduced basis set, to polynomial fits, or to 665 

lookup tables.  For example, n=4 may be an attractive treatment for online partitioning 666 

calculations in a large-scale CTM.  With n=4, the choice of c*min and c*max values will be 667 

important in determining the performance of the partitioning fit, and use of equations 9 668 

and 10 is recommended for basis vector selection.  Figure 4 showed that n=4 basis 669 

vectors were not acceptable, but the specific n=4 basis sets were not optimized for best 670 

performance in section 3.2.  The basis vectors of [0.1 1 10 100], [1 10 100 103], and [0.1  671 

2.2  46  1000] should be considered if an n=4 representation is desired.  It should be 672 

emphasized that an n=4 basis set may be rich enough for fitting the experimental data and 673 

for the online partitioning calculations, but a basis vector with n>4 may  be needed for 674 

quantifying uncertainty limits during the data reduction step.   675 

 676 

Summary and Conclusion 677 

A method for fitting of smog chamber data for CTM applications was presented.  678 

The method uses a volatility basis set of compounds with fitted AMF and user-specified 679 

temperature-dependent saturation concentrations.  A single effective enthalpy is fitted to 680 

match experimental and modeled temperature sensitivity of AMF.  Important aspects of 681 

the method include: selection of minimum and maximum c* values, selection of the 682 
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number of basis set compounds, and estimation of uncertainty bounds for the regression 683 

prediction.  Main conclusions include: 684 

• When fitting parameters to experimental smog chamber data, the range of 685 

effective saturation concentration (c*) values used must be consistent with the 686 

expected temperature and organic aerosol concentration range in the final model 687 

application.  Equations for c*min and c*max are presented in section 2.2. 688 

• The length of the basis vector (number of c* values used, n) can influence both 689 

the quality of the data fitting, and the ability to compute confidence intervals.  690 

Careful selection of c* values is required with n≤5 to insure a good fit and 691 

suitable confidence intervals.  With 6 or more lognormally spaced c* values, the 692 

best fit line and confidence intervals become insensitive to the exact c* basis 693 

vector used.   694 

• A method for determination of confidence intervals is demonstrated.  It is useful 695 

to divide the confidence interval problem for AMF prediction from SOA chamber 696 

experiments into two different regimes:  (1) confidence intervals for interpolation 697 

within experimental data; and (2) extrapolation outside the data.  Interpolation CIs 698 

depend on the scatter in the experimental data itself.   699 

• Although parts of the absorption SOA parameterization are nonlinear and/or 700 

implicit, the calculation of AMF is linear in the stoichiometric coefficients αi.  701 

Therefore, fitted αi values can be calculated using nonnegative linear least squares 702 

if the cOA,tot and ΔH are fixed.  This makes the regression computationally 703 

efficient.   704 
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• In addition to traditional final AMF  smog chamber experiments, newer dynamic 705 

aerosol formation experiments (e.g. PTRMS) and experiments with varied 706 

temperatures can be useful in constraining AMF parameterizations.  Highly time-707 

resolved data, such as a 1-min time series of AMF vs. ΔROG from a PTRMS and 708 

SMPS, may require averaging to reduce serial correlation between datapoints 709 

(discussed in section 3.5).  710 

• Errors in apparent temperature dependence can be generated by correlated errors 711 

in measurements and temperature.  This can be partially corrected with 712 

temperature ramp experiments that isolate the temperature sensitivity.    713 

• Temperature-dependence of semivolatile aerosols is best dealt with by matching 714 

experimental and modeled temperature sensitivity (∂lnc/∂T).  For the α-pinene 715 

ozonolysis, the fitted temperature sensitivity at 40 μg m-3 and 20°C is -0.02 K-1 716 

and the associated ΔH is 33 kJ mol-1.  Fitted ΔH values depend on the basis vector 717 

(but temperature sensitivities do not); therefore, comparisons should be made of 718 

temperature sensitivity and not of ΔH.     719 

• In order to reduce uncertainty in CTM modeling, additional experimental data is 720 

needed at both lower concentrations and at a range of temperatures.   721 

• Although a large number value of n (~6 or more) may be required for an initial 722 

characterization of confidence intervals, this large number of parameters does not 723 

necessarily have to be used in the CTM.  In other words, the items of value to the 724 

CTM modeler are the aerosol mass fraction and uncertainty bounds themselves, 725 

not the parameters, data, and error-correlation matrices used to generate them. 726 
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• While each CTM modeling application may have a different optimal basis set, a 727 

practical method of achieving improved CTM modeling results may for wider 728 

reduction of experimental data to a basis set including "nonvolatile" (c* < 0.1 µg 729 

m–3), "semivolatile" (SVOC; 0.1 µg m–3 < c* < 1000 µg m–3), and "intermediate-730 

volatility" (IVOC; 1000 µg m–3 < C* < 100,000 µg m–3) organic compounds.  In 731 

other words, the n=8 basis set with c* from 10-2 to 105 µg m–3.  The parameters 732 

can be reduced to a smaller set as needed for specific CTM applications as 733 

needed. 734 
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 842 
 843 
Table 1  Minimum and maximum c* values for some scenarios 844 

Scenario cOA,max 
(μg m-3) 

δ 
(μg m-3) 

f Tmin-Tmax 
(°C) 

c*min(25°C) 
(μg m-3) 

c*max(25°C) 
(μg m-3) 

recommended 
n 

General 60 0.1 0.05 0 – 40 1x10-3 240,000 5-10 
Remote with high 

altitude 
5 0.05 0.05 -30 – 40 7x10-4 4.5x106 6-11 

Polluted urban 120 0.5 0.05 0 – 40 0.07 480,000 4-8 
Proposed decadal 

range 
25 0.07 0.05 0 – 40 0.01 100,000 4-8 

 845 
 846 
 847 
Table 2.  Error Formulas Used for Goodness of Fit 848 
Name & Symbol Formula 
Mean Squared Error (errmse) vs. Data ( )∑ −

2ˆ1
iim

ξξ  

Average Bias vs. Data (errmean) ( )∑ −ξξ ˆ1
im

 

Mean Absolute Fractional Error vs. Data (errfrac) 
∑

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −

i

i

m ξ

ξξ ˆ1  
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 Table 3 List of data sources for a-pinene SOA AMF 849 
 850 
Study Experiments Used for Fitting in 

This Work 
α-pinene 

Concentration 
Range 

Temperature 
Range 

No. 
Experiments 

(for this 
analysis) 

Griffin et al., 1999 Outdoor (dark) chamber reaction 
with O3 in excess, OH 
scavenger, inorganic seed, and 
dry conditions 

15-65 ppb 32-37 ºC 6 

Hoffmann et al., 1997 Outdoor (dark) chamber reaction 
with O3 in excess and OH (no 
OH scavenger), inorganic seed, 
and dry conditions 

88-154 ppb 46-50 ºC 5 

Cocker et al., 2001 Indoor chamber reaction with 
O3 in excess or limiting, OH 
scavenger, RH < 20%; some 
seeded experiments and some 
unseeded 

23-163 ppb 28-30 ºC 15 

Pathak et al., 2007 Indoor chamber reaction with O3 
in excess, OH scavenger.  
Seeded and unseeded 
experiments at a many 
temperature / concentration 
combinations 

4-50 ppb 0-40 ºC 31 

Presto and Donahue, 
2006 

Indoor chamber reaction with O3 
in excess, low NOx.  
Experiments 6/14/05 and 
6/28/05. 

1.5-138 ppb 22 ºC 2 

 851 
 852 
 853 
  854 



   

 39

 855 
Table 4.  Description of synthetic data experiments  856 
 857 
Chemical and Physical Characteristics of Underlying SOA Model 

Components 
Description  1-5 6-10 11-14 

Pseudodata Sets 
Generated from Each 
Underlying Model 

log10c* 0.699; 2.90   
α x100  10;    15   2 SOA 

Products  ∆H (kJ mol-1) 80;    60   

Pseudodata A, B1, B2 
 (see descriptions 
below) 

log10c* -1.75; -1.54; -0.436; -0.218; +0.60 0.702; 1.04; 1.56; 1.84; 2.05 2.58; 3.02; 3.24; 3.83 
α x100 0.12;  0.06;   0.6;       3;        1.8 4.2;      1.2;   0.9;   2.4;  0.6 9.0;    1.2;   0.6;   2.4 14 SOA 

products ∆H(kJ mol-1) 120;   110;    90;        80;      60     45;        72;   45;    83;   100 40;      35;   40;    50 
Pseudodata C 

 858 
Pseudodata: 859 
A. Hypothetical sampling by 19 chamber experiments.  Very low sampling error and no bias.  Experimental cOA values from 7-525 μg m-3 and temperatures from 26 to 37°C.  860 
B1.  Hypothetical sampling by 3 series of chamber experiments.  Series one: 10 experiments at 26°C with low error but 10% AMF bias high.  Series 2: 6 experiments at 37°C with 861 

low error but 10% AMF bias low.  Series 3: 5 experiments with constant reactant concentration, but with different temperature in each case (17-37°C ); low error; no bias.   862 
B2.  Same as B1 but adding a 4th series: 5 temperature ramp experiments so that 5 AMF measurements are taken during each experiment, with temperatures ranging from 22-863 

39°C. 864 
C. Hypothetical sampling by 19 chamber experiments.  Very low sampling error and no bias.  Experimental cOA values from 7-525 μg m-3 and temperatures from 26 to 37°C.  865 

(Identical to Pseudodata A).866 
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Appendix A –AMF (yield) equations with density and preexisting organic aerosol 867 

considerations 868 

 869 

Equation 6 is the commonly encountered fitting equation.  Here we show that equation 6 is a 870 

special case of a more general set of mass balances for the semivolatile aerosol system.  The 871 

equations in this appendix are necessary when accounting for experimental and simulation cases 872 

where the organic aerosol density is not assumed to be unity, and for cases with preexisting 873 

organic mass. 874 

 Starting from the following definition: 875 

 
*,*

, i
OA

iaeri
iigasi c

c
c

cyc =≡  (A1) 876 

the following expression can be derived by mass balance: 877 

 

OA

iitot

iaeri
i

c
cc

c
*

,

,

1

1

+
=≡ξ  (A2) 878 

This can be used with the following definitions of AMF and reaction mass yield αi.   879 

 ROGc iitot Δ≡Δ α,  (A3) 880 

 ∑
+

=
Δ
Δ

≡=

OA

i

iOA

c
cROG

c
AMF *

1

α
ξ  (A4) 881 

Using the above equations, we can write expressions for prediction of organic aerosol mass 882 

(cOA), species-specific partitioning values εi, and smog chamber AMF as function of parameters 883 

such as αi, ΔROG, and ci*.  To keep the expressions general, we assume the density of the 884 

organic aerosol is unknown, and with preexisting organic aerosol.     885 

 886 
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We denote the values of variables corresponding to the real organic aerosol density as in the 887 

above equations (no subscript).  We denote values of variables under the case of assumed unit 888 

organic aerosol density with a subscript ρ=1 for physical variables such as ξ and cOA.  Preexisting 889 

aerosol is denoted by the superscript P.   890 

 Expression for cOA, cOA,ρ=1, ξ and ξρ=1 are then: 891 
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where the definitions ρ
ρ1

*
* i
i

cc =
′  and ρ

ραα 1i
i =′ are used.  The 4 alternate versions of the 893 

denominator in equation A5 can be made in all the cases below, and the different expressions are 894 

not repeated.  Separating the organic aerosol (cOA) and the total concentration of species i into 895 

preexisting and reaction-generated parts, gives the equations for cOA and AMF in the case of 896 

preexisting aerosol and assumed unit density.  An equation for AMF in the case of preexisting 897 

aerosol is not written, since the organic aerosol concentration can change from partitioning of 898 

preexisting and reaction-generated species.   899 
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In the case of no preexisting aerosol: 901 
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and ∑∑ ′
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and ∑ ′
+

′
Δ=

1

*1
1

ρ
ρ

α
ρ
ρ

OA

i

i
OA

c
c

ROGc  (A9) 904 

 In this work, all aerosol concentrations and AMFs are calculated using unit density 905 

conversions from SMPS aerosol volume, so the fitting really recovers the normalized values 906 

ρ
ρ1

*
* i
i

cc =
′ and ρ

ραα 1i
i =′ according to equation A7.  To make concentration predictions for 907 

organic aerosols with densities other than 1.0 requires the use of equation A9.  At low aerosol 908 

mass fractions, the terms cancel and correct AMF and cOA predictions will be made by regressed 909 

values of α, regardless of the density assumption made.  At high aerosol loadings, AMF and cOA 910 

concentration predictions will be low for actual aerosol specific gravities > 1. 911 

 912 
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Appendix B – Derivation of formulae for c*min and c*max 913 

 914 

 For any expected parameterization applicability domain (defined by cOA,min, cOA,max, Tmin, 915 

and Tmax) the extreme values required of the effective saturation concentration (c*min and c*max) 916 

are calculated as follows.  For a single condensing component in the presence of cNV,min 917 

(nonvolatile, organic, and solution forming) preexisting aerosol, the mass balance for the 918 

semivolatile species is: 919 

 *
,,,, VSSVSVtotSVgasSVtotSVaer cycccc −=−=  (B1) 920 

where cgas,SV and caer,SV refer to the gas- and particle-phase concentrations of the semivolatile in 921 

μg m-3.  Adding in the preexisting nonvolatile organic, the total organic aerosol concentration is: 922 

 min,
*

,min,, NVVSSVSVtotNVSVaerOA ccycccc +−=+=  (B2) 923 

To determine c*min, the lowest c* necessary to achieve the required modeling accuracy goal δ, 924 

we construct a scenario where a truly non-volatile species is represented in the model as having a 925 

finite saturation concentration c*min, therefore creating an error.  The true aerosol concentration 926 

in this case will be: 927 

 =trueOAc ,  min,, NVSVtot cc +  (B3) 928 

while the modeled aerosol concentration will be: 929 

 δ≤= *
mincyc SVerror  (B4) 930 

to keep this error less than a user-selected goal δ : 931 

 
SVy

c δ
≤*

min  (B5) 932 

If the organic aerosol consists only of the nonvolatile and semivolatile fractions, then we can 933 

eliminate ySV to give:  934 
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 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+≤

SVtot

NV

c
c

c
,

min,*
min 1δ  (B6) 935 

For a conservative estimate of c*min, we assume ctot,SV >> cNV,min, to keep the right hand side as 936 

small as possible.  Furthermore, the calculation is assumed to apply at the highest temperature 937 

applied in the model (Tmax).   938 
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Putting in 100 kJ/mol, neglecting Tmax/Tref, and with temperature in Kelvin: 940 

 ⎥
⎦

⎤
⎢
⎣

⎡
−≈ 27.4012000exp

max

*
298min, T

c K δ  (B8) 941 

With δ of 1 μg m-3 and Tmax at 40°C, c*min is 0.14 μg m-3. 942 

To derive c*max we consider a case with non-volatile solution-forming aerosol (secondary or 943 

primary) cNV,max and one condensing species with saturation concentration c*max.  The goal is 944 

then to select c*max sufficiently high so that material in this bin is not in the aerosol phase.  945 

Donahue, Robinson et. al (2006) suggest 1000 cNV,max which ensures that less than about 0.1% of 946 

material in the c*max bin partitions to the aerosol phase.  A slightly more flexible approach is to 947 

include the CTM modeler’s tolerance for error in semivolatile partitioning under high 948 

concentrations and low temperature.  The mass balance for the semivolatile species is given by 949 

B1.  A relative accuracy goal, denoted by f, is defined. At the high end of the expected 950 

concentration range in the model, the accuracy goal (μg m-3) is ±f coa,max (e.g., f=0.1 for ±10% 951 

accuracy).   952 

 ( )SVaerNVSVaer ccfc ,max,, +≤  (B9) 953 

If we assume that caer,SV is a small fraction of cNV,max then: 954 
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c ≤
+
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which can be solved for c*max yielding: 956 

 max,
,*

max NV
SVtot c

f
c

c −≥  (B11) 957 

The ctot,SV term is difficult to estimate.  It represents the total pool of semivolatile compounds 958 

that need to be modeled as in the gas phase.  One reasonable assumption is to assume for any 959 

given location, that gas phase semivolatile concentrations are proportional to organic aerosol (or 960 

vis versa), such that ctot,SV = kcNV,max.   This simplifies B11 to: 961 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−≥ 1,

*
max f

kcc highNV  (B12) 962 

If we further assume that k is at least unity (the mass of semivolatiles is at least the organic 963 

aerosol concentration) and the desired fractional error is small, then: 964 

 highNVc
f
kc ,

*
max ≥  (B12) 965 

where k is an unknown ratio of the semivolatiles gases to the organic aerosol.  Taking values 966 

from Mexico City, we find a total VOC concentration of ~2000 μg m-3 (Edgerton et al., 1999) 967 

and an organic aerosol concentration of ~20 μg m-3 (Salcedo et al., 2006).  If 5% of the VOC is 968 

SV, then k = 5 for Mexico City.  Applying a temperature correction similar to the one for c*min 969 

(but in the other direction) 970 
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Using Tref of 25 °C, ΔH of 100 kJ mol-1, k=5, and ignoring Tmin/Tref, equation B13 reduces to: 972 
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c
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If the fractional accuracy goal is 10%, cNV,max is 100 μg m-3, and Tmin is 0°C then c*max(298 K) ≈ 974 

200,000 μg m-3, or 200 mg m-3.  Thus the total multiplier to cNV,max in this case is 2000, 975 

comparable to the multiplier of 1000 in Donahue et al. (2006). 976 



   

 47

Appendix C.  Algorithm for the Monte-Carlo confidence intervals 977 

1. Create a vector cOA,model (length p~20) of aerosol concentrations, logarithmically spaced 978 

from cOA,min to cOA,max (the maximum and minimum expected aerosol concentrations in 979 

the modeling application).   980 

2. Create a vector (length j) of temperatures from Tmin to Tmax.  In this work, j is selected for 981 

spacing between elements of 10°C. 982 

3. Let the experimental yields be a vector ξ, and the fitted predictions at the experimental 983 

values of cOA and T are the vector δξ±
)

 where the values δ are from the confidence 984 

intervals of the asymptotic method (e.g., MATLAB nlpredci function).  All these vectors 985 

(ξ, ξ
)

, and δ) will have length of m corresponding to number of experiments.   986 

4. The experimental data are shifted by δ such that: ξhigh = ξ + δ and ξ low = ξ – δ. 987 

5. A reference error value, corresponding to how well the fit goes through the data, is noted: 988 

( ) mMSE iiref ∑ −=
2

ξ̂ξ  989 

6. Initialize j upper confidence intervals (CI) vectors (each of length p), one for each 990 

temperature.  Set each element to zero.   991 

7. Initialize j lower confidence interval vectors (each of length p), one for each temperature.  992 

Set each element to a large value (e.g. 999). 993 

8. Create a vector (length k) of ∆H values.  In this work, k was usually selected for a 994 

separation of 5 kJ mol-1 and a range from 10 to 120 kJ mol-1.   995 

The outer loop (steps 9-16) is repeated 4·k times.  For each value of ∆H, the four runs are 996 

for upper CI (allowing random selection of low volatility yields); lower CI (allowing 997 

random selection of low volatility yields); upper CI (allowing random selection of high 998 

volatility yields); and lower CI (allowing random selection of high volatility yields). 999 
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OUTER LOOP 1000 

9. Since for any iteration ∆H is fixed, the left hand matrix of equation 13 (C) is calculated 1001 

and stored.  This speeds up the subsequent calculation of yields given any vector α.   1002 

10. The n yields α are divided into two groups, those that will be selected randomly, and 1003 

those that will be fit.  If the iteration involves randomized low volatility yields, then some 1004 

number of the lowest volatility species (e.g. α1 and α2) are selected randomly.  If the 1005 

iteration involves randomized high volatility yields, then some of the highest volatility 1006 

species (e.g., αn-1 and αn) are chosen randomly.   1007 

In this work, the number of low and high volatility yields to be randomized were selected 1008 

by the user on a case by case basis, with the goal of only selecting yields that are poorly 1009 

constrained by the experimental data.  The typical n=7 case required randomization of α1, 1010 

α2 and α6, α7.  Inspection of the error covariance matrix and the standard errors on the 1011 

original fitted yields will help in selecting which yields to randomize.  In the 1012 

demonstration case of Figure 3 (section 3.1), the α’s with the 5 largest standard errors 1013 

were selected, or elements 1, 2 (uncertain low volatility compounds) and 6, 7 and 8 1014 

(uncertain high volatility compounds).  The range of experimental data can serve as a 1015 

guide for which terms are poorly constrained.  If a given c* value is outside the range of 1016 

experimental data (in this case from 7-525 μg m-3), then the corresponding α value should 1017 

probably be randomized. Erring on the conservative side, and trying to select α values 1018 

randomly that are in fact well constrained by the data does not effect the quality of the 1019 

result.  Rather it adds run time as calculations are performed that are of no subsequent use 1020 

in determining the CIs. 1021 
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11. Let the number of random α values be q and the number to be fit equals n-q.  Let the 1022 

fixed yields be denoted as αq and the variable yields as αn-q.  Also let the C matrix (from 1023 

equation 13) be split into an m x q matrix Cq corresponding to the columns of the fixed 1024 

yields, and a matrix Cn-q [size m x (n-q)] corresponding to the columns of the adjustable 1025 

yields. 1026 

INNER LOOP 1027 

12. 1000 random combinations of the random α values are chosen. 1028 

13. For each of the 1000 cases, the remaining n-q yields are calculated by solving a 1029 

modified version of equation 13.  The adjustable yields αn-q are determined by 1030 

solving 0  with    ≥−= −−− qnqq
*

qnqn ααCξαC    where ξ* is ξ high when calculating an 1031 

upper CI and ξ * is ξ low when calculating a lower CI. 1032 

14. For each of the 1000 cases, the mean squared error is calculated 1033 

( ) mMSE ii∑ −−=
2

(ˆ
qnq α,αξξ .   1034 

If MSE ≤ MSEref then it is a suitably good fit.  Fitted values ξ
)

 are calculated at all j x 1035 

p combinations of temperature and organic aerosol concentration.  For upper CI, 1036 

CIhigh = max(CIhigh, ξ
)

), and for the lower CI, CIlow = min(CIlow, ξ
)

) where the 1037 

comparison is on an element by element basis. 1038 

15. If the confidence intervals moved more than a present tolerance, repeat the inner loop by 1039 

going to step 12. 1040 

16. Loop back to step 9 until all 4k cases are completed. 1041 
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17. For each temperature of interest, upper and lower confidence interval vectors are now 1042 

calculated using the Monte-Carlo method.  They should be inspected graphically and 1043 

compared to the limits from the asymptotic method.   1044 

 1045 
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Supplemental Data Table (online only) 1046 
 1047 

Result Author’s 
Identifier 

ΔROG 
(ppb) 

ΔROG 
(μg 
m-3) 

O3 
initial 
(ppb) 

Temperature 
(°C) 

RH OH-
Scavenger 

Seed 
ΔM 
(μg 
m-3) 

AMF 
ΔM/ΔROG 

(%) 
Single-temperature final AMF chamber experiments 
Griffin et al., 1999 

6/5/98a 16.7 89  36.8 2-butanol (NH4)2SO4 7.4 8.3
6/5/98b 18.2 97  36.8 2-butanol (NH4)2SO4 8.5 8.7
6/7/98a 31.0 169  30.2 2-butanol (NH4)2SO4 30.3 17.9
6/7/98b 45.5 249  30.2 2-butanol (NH4)2SO4 46.0 18.4
6/9/98a 57.0 307  34.8 2-butanol (NH4)2SO4 52.3 17.0
6/9/98b 65.0 350  34.8 2-butanol (NH4)2SO4 65.1 18.6

Hoffmann et al., 1997 
9/27A 88.0 454 210 48.1 none (NH4)2SO4 82.0 18.0
9/27B 38.0 196 220 48.9 none (NH4)2SO4 29.9 15.2
9/29A 101.9 795 320 47.2 none (NH4)2SO4 80.4 23.0
9/29B 154.1 527 327 48.1 none (NH4)2SO4 183.5 15.2

10/02A 132.9 690 210 46.1 none (NH4)2SO4 94.9 13.7
Cocker et al., 2001 

11/29a 74.7 411 280 28.0 <2 2-butanol (NH4)2SO4 82.0 20.0
11/29b 144.1 792 360 28.0 <2 2-butanol (NH4)2SO4 190.0 24.0
12/03a 40.6 223 370 28.0 <2 2-butanol (NH4)2SO4 34.0 15.2
12/03b 72.3 398 315 28.0 <2 2-butanol (NH4)2SO4 79.0 19.8
12/06b 22.9 126 280 28.0 <2 2-butanol (NH4)2SO4 10.0 7.9
01/08a 72.4 399 270 27.8 <2 2-butanol none 80.0 20.1
01/10a 41.0 225 278 28.9 <2 2-butanol none 35.0 15.5
01/10a 93.4 512 499 28.9 <2 2-butanol none 110.0 21.5
01/13a 72.3 396 244 29.5 14.1 2-butanol (NH4)2SO4 79.0 19.9
01/13b 118.4 648 352 29.5 14.4 2-butanol (NH4)2SO4 145.0 22.4
01/14a 48.4 265 402 29.6 14.6 2-butanol (NH4)2SO4 48.0 18.1
01/14b 98.8 541 313 29.6 16.6 2-butanol (NH4)2SO4 115.0 21.3
01/18a 116.1 637 130 29.1 <2 2-butanol (NH4)2SO4 140.0 22.0
01/22a 162.3 888 175 29.6 <2 2-butanol none 220.0 24.8
01/22b 139.3 763 380 29.6 <2 2-butanol none 185.0 24.3

Pathak et al., 2007 
1 14.3 76 250 40.0 <10 2-butanol none 7.0 9.2
2 42.0 242 250 15.0 <10 2-butanol none 50.7 21.0
3 38.3 217 250 20.0 <10 2-butanol none 33.7 15.6
4 50.0 273 250 30.0 <10 2-butanol none 48.7 17.8
5 50.0 265 250 40.0 <10 2-butanol none 34.7 13.1
7 7.3 41 1500 20.0 <10 2-butanol none 2.8 6.8
9 3.7 21 3100 20.0 <10 2-butanol none 0.7 3.3

10 7.3 39 1500 40.0 <10 2-butanol none 2.1 5.4
11 7.3 42 1500 15.0 <10 2-butanol none 2.6 6.2
12 7.3 40 1500 30.0 <10 2-butanol none 2.5 6.3
13 38.3 217 250 20.0 <10 2-butanol (NH4)2SO4 37.6 17.4
14 7.3 41 1500 20.0 <10 2-butanol (NH4)2SO4 2.9 7.0
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Result Author’s 
Identifier 

ΔROG 
(ppb) 

ΔROG 
(μg 
m-3) 

O3 
initial 
(ppb) 

Temperature 
(°C) 

RH OH-
Scavenger 

Seed 
ΔM 
(μg 
m-3) 

AMF 
ΔM/ΔROG 

(%) 
15 8.0 45 250 20.0 <10 2-butanol (NH4)2SO4 2.6 5.7
19 8.0 46 1500 15.0 <10 2-butanol (NH4)2SO4 3.7 8.0
20 7.3 39 1500 40.0 <10 2-butanol (NH4)2SO4 1.4 3.6
21 8.5 46 1500 30.0 <10 2-butanol (NH4)2SO4 3.4 7.3
22 14.3 82 250 15.0 <10 2-butanol (NH4)2SO4 7.2 8.8
23 14.3 82 300 15.0 <10 2-butanol (NH4)2SO4 9.3 11.3
24 14.3 81 250 20.0 <10 2-butanol none 9.8 12.1
25 14.3 78 250 30.0 <10 2-butanol none 10.0 12.8
26 38.3 220 250 15.0 <10 2-butanol (NH4)2SO4 33.3 15.1
27 38.3 203 250 40.0 <10 2-butanol (NH4)2SO4 37.0 18.3
28 29.0 167 250 15.0 <10 2-butanol (NH4)2SO4 18.2 10.9
29 7.3 41 750 20.0 <10 2-butanol (NH4)2SO4 3.1 7.5
30 33.0 180 250 30.0 <10 2-butanol (NH4)2SO4 26.5 14.7
31 14.3 78 250 30.0 <10 2-butanol (NH4)2SO4 7.6 9.7
32 15.0 91 250 0.0 <10 2-butanol (NH4)2SO4 16.1 17.7
33 17.0 98 250 15.0 <10 2-butanol (NH4)2SO4 10.5 10.7
34 14.3 78 250 30.0 <10 2-butanol (NH4)2SO4 10.8 13.8
35 24.0 127 250 40.0 <10 2-butanol (NH4)2SO4 16.0 12.6
36 42.0 255 250 0.0 <10 2-butanol (NH4)2SO4 96.2 37.7

PTRMS Experiments 
Presto and Donahue, 2006 
6/14/2005   280 22.0 none none  
 1.50 8.4   0.001 0.017
 2.47 13.9   0.057 0.41
 2.87 16.1   0.313 1.94
 4.01 22.5   0.717 3.18
 3.95 22.2   1.12 5.06
 4.45 25.0   1.43 5.71
 4.78 26.9   1.71 6.37
 4.87 27.4   1.91 6.99
 5.52 31.0   2.07 6.69
 5.17 29.0   2.21 7.63
 5.49 30.8   2.32 7.53
 5.85 32.8   2.40 7.30
 5.69 31.9   2.49 7.78
 6.04 33.9   2.56 7.56
 6.00 33.7   2.62 7.77
 6.06 34.0   2.63 7.72
 6.18 34.7   2.68 7.73
 6.22 35.0   2.70 7.74
 6.06 34.0   2.74 8.05
 6.23 35.0   2.72 7.79
 6.21 34.9   2.74 7.85
 6.06 34.0   2.76 8.10
 6.33 35.5   2.75 7.74
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Result Author’s 
Identifier 

ΔROG 
(ppb) 

ΔROG 
(μg 
m-3) 

O3 
initial 
(ppb) 

Temperature 
(°C) 

RH OH-
Scavenger 

Seed 
ΔM 
(μg 
m-3) 

AMF 
ΔM/ΔROG 

(%) 
 6.28 35.3   2.73 7.75
 6.07 34.1   2.75 8.07
 6.25 35.1   2.73 7.79
 6.21 34.9   2.76 7.91
 6.46 36.3   2.74 7.56
 6.16 34.6   2.74 7.92
 6.25 35.1   2.74 7.82
 6.29 35.3   2.73 7.75
 6.31 35.4   2.73 7.72
 6.38 35.8   2.74 7.66
 6.30 35.4   2.71 7.66
 6.28 35.3   2.72 7.70
 6.20 34.8   2.71 7.80
 6.29 35.3   2.71 7.67
 6.29 35.3   2.71 7.66
6/28/2005     390 22.0 none none    
 24.1 135   15.3 11.3
 50.2 282   46.3 16.4
 71.1 399   73.7 18.4
 84.7 476   95.1 20.0
 96.8 543   112.9 20.8
 113.1 635   143.7 22.6
 129.5 727   164.9 22.7
 128.8 723   167.6 23.2
 129.2 726   170.3 23.5
 129.6 728   174.0 23.9
 134.1 753   185.0 24.6
 138.1 775   191.1 24.7
 138.8 779   190.7 24.5
 138.9 780   192.7 24.7
 139.8 785   191.7 24.4
 1048 


