Understanding Episodes of High Airborne Particulate Matter in Iowa

Charles Stanier Greg Carmichael -- University of Iowa

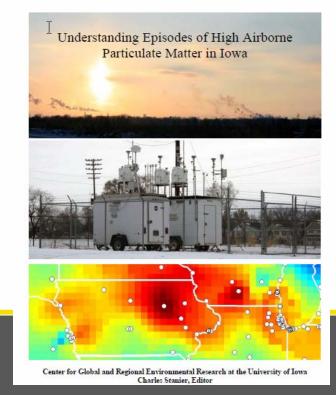
A report commissioned by the Bi-State State Regional Commission

CENTER FOR GLOBAL AND REGIONAL ENVIRONMENTAL RESEARCH

THE UNIVERSITY OF IOWA

Contributors

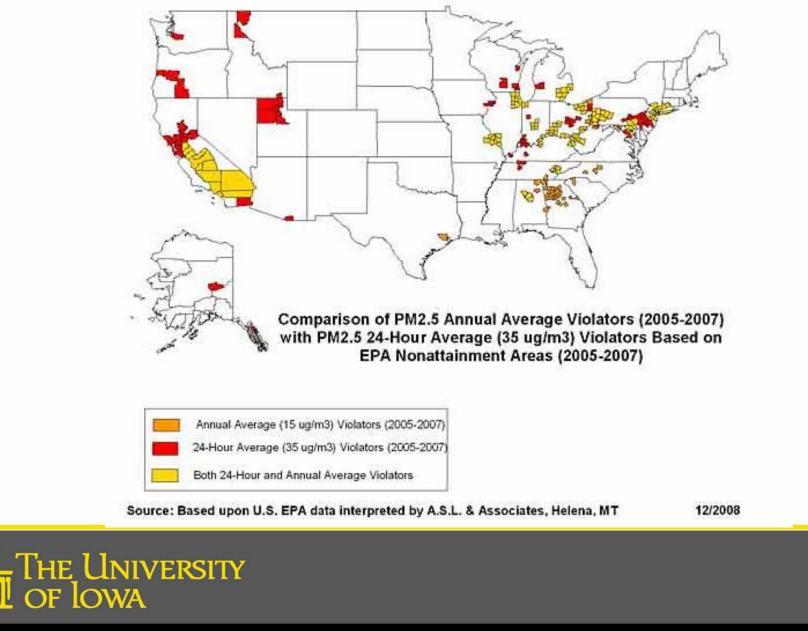
- Faculty
 - Gregory Carmichael
 - Charles Stanier
 - Tracey Holloway
- Graduate Students
 - Morgan Brown
 - Aditsuda Jamroensan
 - Sinan Sousan
 - Pallavi Marrapu


- Postdoctoral Researchers
 - Scott Spak
 - Sang Rin Lee
- Undergraduate
 Students
 - Alex Bender
 - Adam Beranek-Collins

Jul 8, 2009

Report Available Online

http://www.engineering.uiowa.edu/
 ~cs_proj/iowa_pm_project/iowa_pm.htm

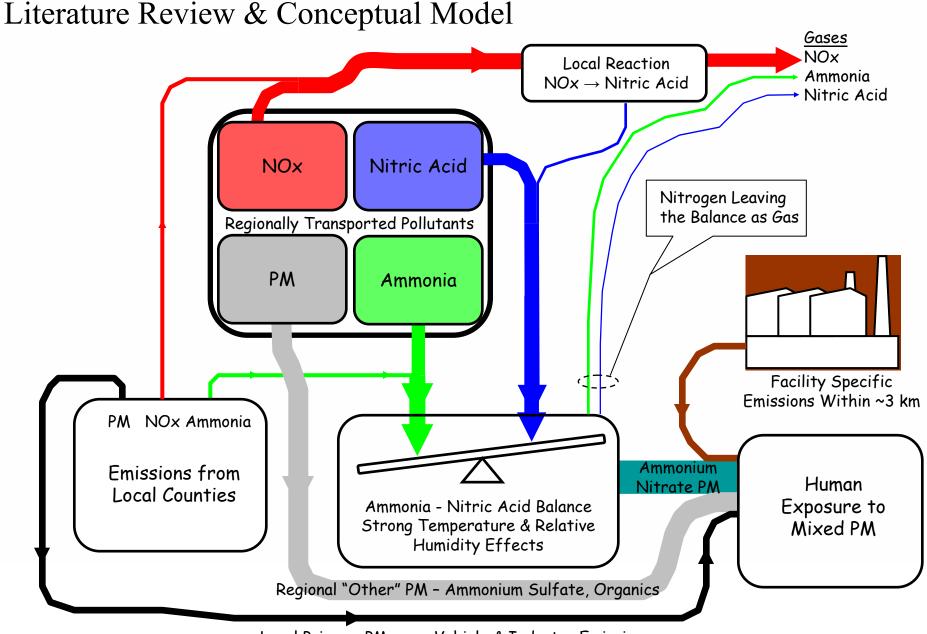


Jul 8, 2009

- Old standard (1997)
 - Annual average of 15 $\mu g~m^{-3}$
 - $-\,24$ hour average (98th percentile) of 65 $\mu g\ m^{-3}$
- New standard (2006)
 - Annual average of 15 µg m⁻³
 - $-\,24$ hour average (98th percentile) of 35 $\mu g\ m^{-3}$

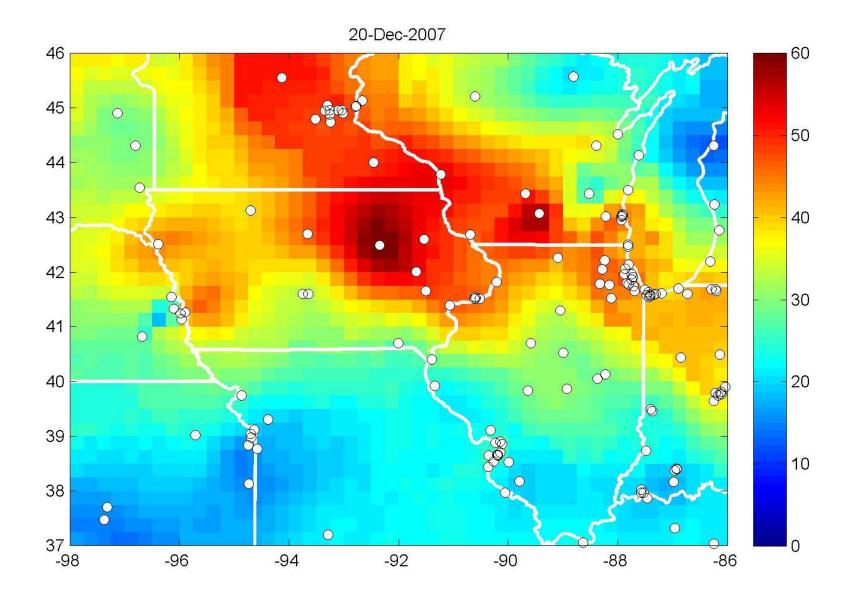
Non-attainment vs. 24-hour standard of 35 µg m⁻³

Jul 8, 2009



What's in our report

Review existing publications on Midwestern air quality	Quantify and catalog regional warm and cold weather episodes	Quantify regional versus local events	Explain conceptual model of Iowa PM formation
Compare background and individual monitor values	Estimate likelihood of future compliance with and without controls	Review IDNR measurements of aerosol chemistry	Indentify and quantify directional sources
Determine limiting reagent to ammonium nitrate formation	Examine nitric acid formation pathways	Examine effect of fog	Examine meteorology surrounding episodes
Characterize model performance during episodes	Recommend next steps		



Local Primary PM - e.g. Vehicle & Industry Emissions

PM episodes occur during both warm and cold seasons. The warm and cold weather episodes are of comparable magnitude and impact on compliance with air quality standards.

Episode List Available

Table 4-2. Key high PM episodes spanning 3 or more monitors identified by the University of Iowa. Full list in Appendix A.

Notes	Multisite (~5) PM _{2.5} Avg.	Location – Peak FRM Measurement	Peak FRM Measurement	Estimated End Date	Estimated Start Date	Season (Cold / Warm)	Univ. of Iowa Episode Code	Ranking (by multi-monitor average)
b,	49.6	Waterloo	63.0	12/21/07	12/17/07	С	2007-20	1
b,	42.6	Clinton - 23rd & Camanche	50.9	11/27/06	11/21/06	С	2006-7	2
b,	40.3	Waterloo	53.2	2/3/05	1/27/05	С	2005-5	3
	40.1	Davenport – Wellman St.	50.5	8/3/05	7/31/05	W	2005-7	4
	39.7	Muscatine	43.9	4/19/03	4/15/03	W	2003-6	5
	39.4	Muscatine	59.3	7/4/04	7/1/04	W	2004-4	б
	39.4	Cedar Rapids - Wenig Rd Ne	44.0	9/11/03	9/6/03	W	2003-9	7
1	39.3	Clinton - Roosevelt St.	42.3	12/30/04	12/26/04	С	2004-7	8
	38.8	Clinton - Roosevelt St.	50.5	2/25/08	2/21/08	С	2008-5	9
b,	38.6	Mason City	42.3	2/20/04	2/16/04	С	2004-2	10
	37.9	Davenport - Wellman St.	44.2	3/10/07	3/6/07	С	2007-4	11
	36.5	Davenport - Wellman St.	40.5	9/13/05	9/5/05	w	2005-8	12
1	36.3	Clinton - Roosevel‡ St.	39.7	12/25/05	12/20/05	С	2005-10	13
1	36.1	Davenport - 10th & Vine	39.7	3/1/03	2/27/03	С	2003-2	14
	35.9	Sioux City	37.6	2/4/08	1/31/08	С	2008-4	15
	35.7	Des Moines Iowa - Carpenter	39.4	8/14/03	8/12/03	W	2003-8	16
	35.0	Cedar Rapids - Wenig Rd Ne	48.7	3/20/03	3/11/03	С	2003-3	17
	34.6	Davenport - Wellman St.	41.7	6/29/05	6/23/05	W	2005-6	18
	33.1	Des Moines Iowa - Carpenter	34.5	1/11/04	1/8/04	С	2004-1	19
	32.5	Clinton - Roosevelt St.	34.3	10/29/04	10/26/04	w	2004-6	20

Jul 8, 2009

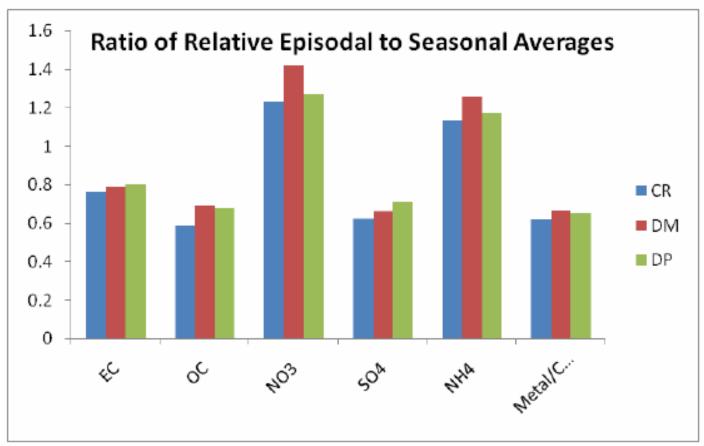


Figure 5-3. Enrichment ratios for six aerosol species during episodes. Values greater than 1 indicate an increase in the fraction of the aerosol attributable to that species during episodes. (e.g. 10% by mass on average, and 15% by mass during episodes would be a ratio of 1.5).

Jul 8, 2009

Regional episodes in excess of 35 μ g m⁻³ are probably not frequent enough to, by themselves, put Eastern Iowa into noncompliance. The accuracy of this conclusion is predicated on the assumption that the period 2002-2008 is representative of future conditions.

Emmetsburg	100.0%	Cedar Rapids - 11st St. Nw	100.0%
Montgomery County - Viking Lake	100.0%	Council Bluffs	100.0%
Clive	100.0%	Iowa City	96.3%
Clarion	100.0%	Davenport - Adams Elemntary - N Division St.	99.5%
Lake Sugema State Park	100.0%	Cedar Rapids - Pioneer Ave	100.0%
Des Moines Iowa - Carpenter	100.0%	Davenport - 10th & Vine	100.0%
Sioux City	100.0%	Clinton - Roosevelt St.	99.6%
Des Moines - NE 3rd St - Saylor Twp	100.0%	Muscatine	42.6%
Cedar Rapids - Wenig Rd Ne	99.3%	Keokuk	100.0%
Van Buren County - Lacey Trail	100.0%	Clinton - 23rd & Camanche	51.2%
Waterloo	100.0%	Davenport - Blackhawk Foundry	24.7%
Backbone St. Park	84.3%	Monitor - Wellman St.	

Understanding PM Iowa - Stanier

Jul 8, 2009

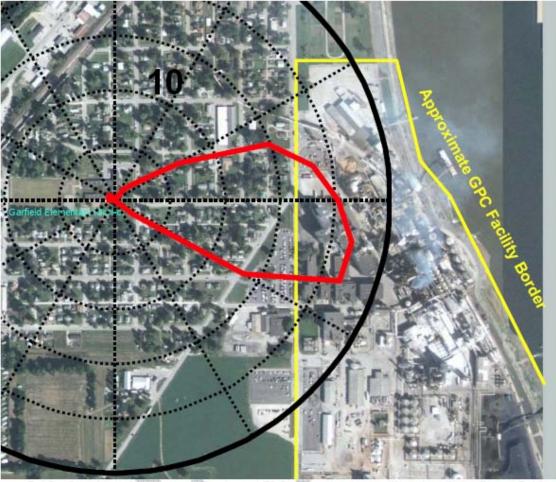
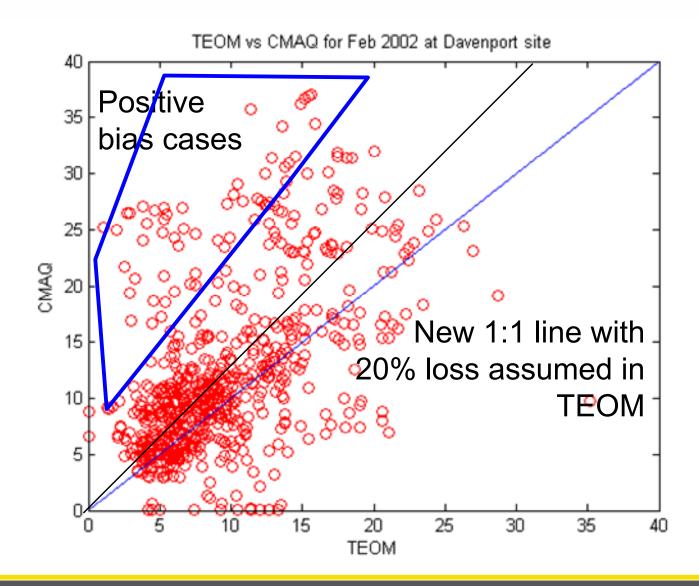
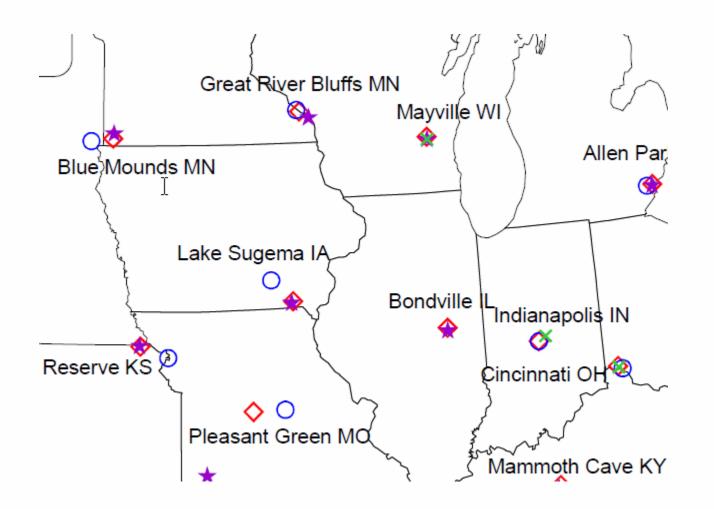
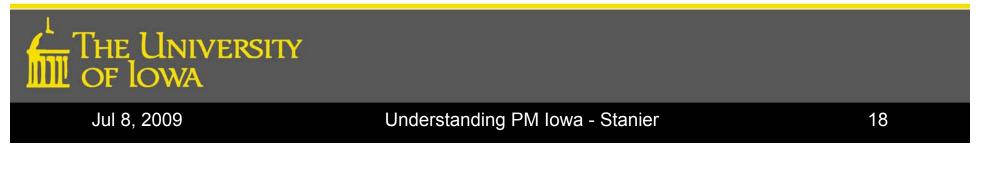
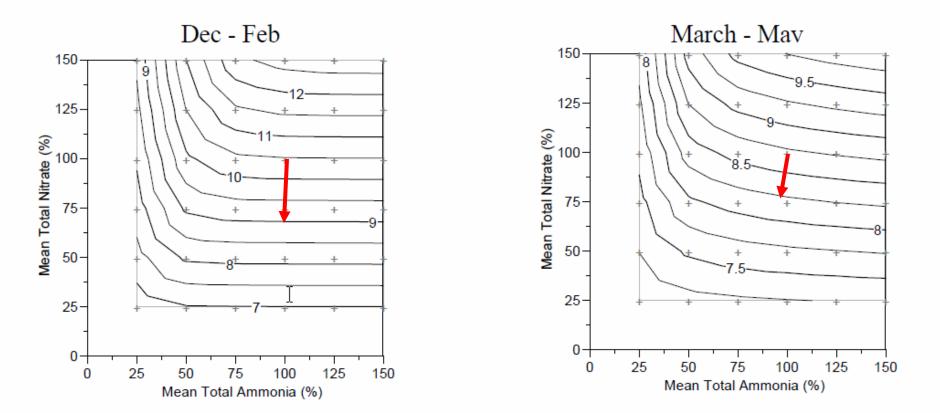



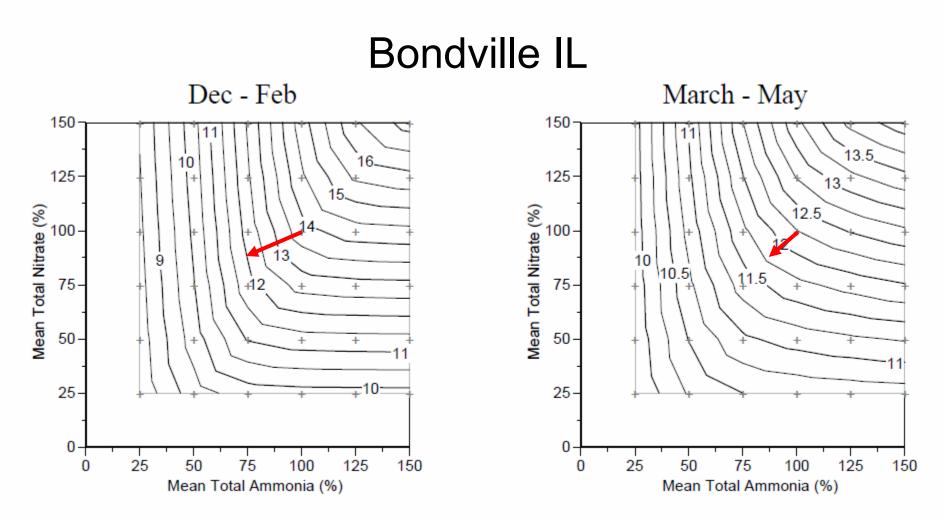
Figure 7-15. Overlay of the regression-based $PM_{2.5}$ increment vs. direction from figure 7-11 on aerial photograph of Muscatine. The polar plot is centered on the monitoring location. The rings refer to increments of 5, 10, 15, 20, and 25 µg m⁻³ on FRM measurements (over the regional median level). These values are equivalent to the best prediction of the extra mass on the FRM filter for a constant 24-hr wind direction.

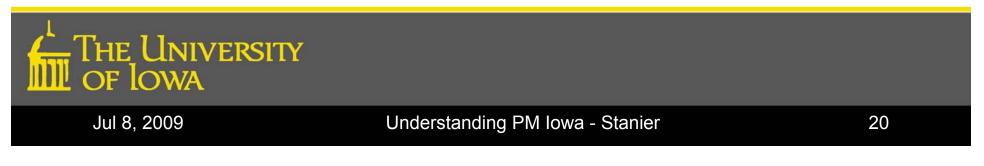
- Two episodes in 2002 were compared to their corresponding model predictions from a regional implementation of the CMAQ air quality model.
 - The model reproduced the episodes fairly well.
 - Spatial patterns of total PM2.5 and nitrate, as well as temporal patterns agree.
 - The model does exhibit some high bias
 - The agreement is sufficient to explore control scenarios for reducing average and peak daily concentrations.

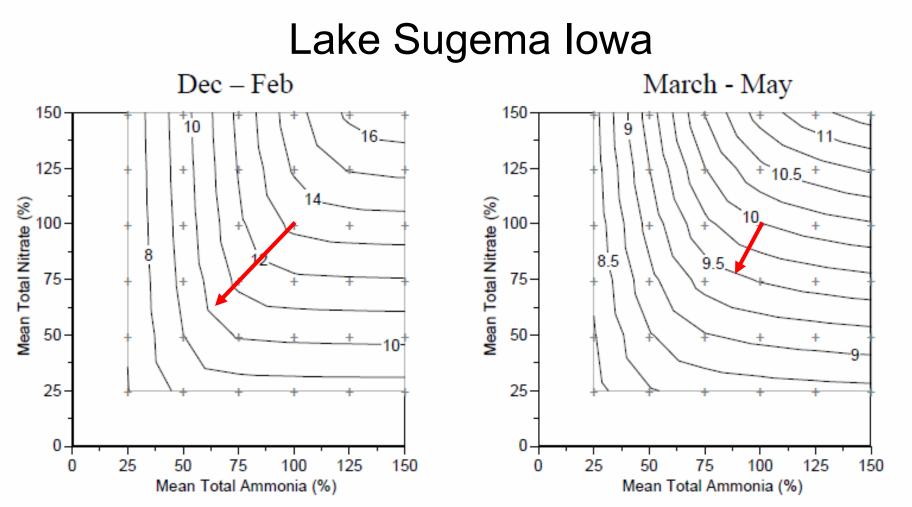




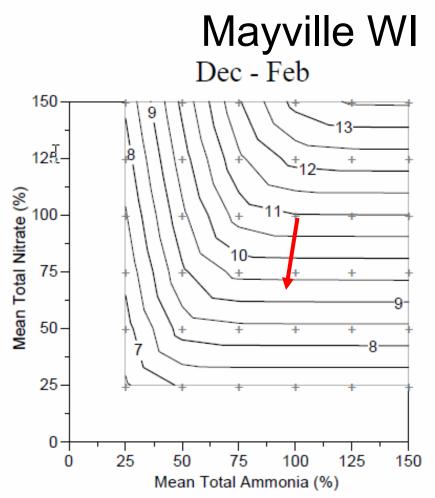

- Many authors have looked in general at the sensitivity of PM levels to total nitric acid and ammonia
 - Most analyses have not been directly applicable to wintertime episodes in the Midwest. (focus rather on long term PM, eastern U.S., and nitrate replacement).
- Authors who have looked at the wintertime Midwest have some disagreement on nitric acid vs. ammonia sensitivity.
 - Dennis et al. (2008) have in their model that the Midwest in winter (Jan 2002) has an adjusted gas ratio in the range of ~1.1 to 1.7, and thus ammonia is somewhat in excess.
 - Chu et al. (2004) found that ammonia was present in excess in areas west of the Ohio river during the Feb 6-8, 2002 episode.
 - Blanchard 2008




Blue Mounds, Minnesota



Blanchard. 2008. Analysis of Inorganic Particulate Matter Formation in the Midwestern United States (Draft)



Jul 8, 2009

Jul 8, 2009

Last day of episode 2005-5. 3rd highest regional episode in UofI list

Table 8. SCAPE model results for February 3, 2005.

Sites not shown did not have complete monitoring data on this date.

State	Location	Mean PM ₂₅ Mass Concentration (µg/m3)					
		Base	50%		50%	50%	50%
		Case	Reduction	ł	Reduction	Reduction	Reduction
			Sulfate		Total	Total	Sulfate, Total
					Nitrate	Ammonia	Nitrate, and
							Total Ammonia
IA	Lake	30.6	27.2		22.5	19.5	18.4
	Sugema						
IL	Bondville	32.4	29.2		23.2	18.9	17.6
KS	Reserve	6.9	6.3		5.4	6.6	4.6
KY	Mammoth	20.8	16.4		20.3	17.9	14.2
	Cave						
MI	Allen	54.9	50.6		44.9	38.8	37.3
	Park						
MN	Blue	6.4	6.2		4.2	6.3	3.8
	Mounds						
MN	Great	24.7	22.9		17.6	17.2	15.1
	River						
	Bluffs						
MO	Pleasant	20.4	20.1		17.8	14.9	14.2
	Green						
OH	Athens	22.1	18.7		20.4	16.6	14.5

- Rural sensitivity on long (monthly timescales) Eastern lowa is
 - either balanced in sensitivity to nitric acid and ammonia
 - or slightly with ammonia in excess;
- No consensus (other studies say clearly ammonia excess);
- Less clear when moving to episodic timescales and urban locations;
- Quad Cities on transition line between ammonia excess (to the northwest) and ammonia limitation (to the southeast)?
- Sensitivity may change from event to event depending on season and meteorology.

- What we were able to establish or confirm
 - Major role for ammonium nitrate during wintertime episodes
 - Fog episodes probably not important
 - Cold weather regional episodes generally occur on the back end of a warm front.
 - Nitric acid from the NO3 radical and N2O5 are important
 - Model-based investigations of PM vs. NOx and ammonia cuts are have high probability of error due to uncertainty in sensitivity.
 - The above limitation can be overcome by combining nitrogen field measurements with models.
 - PM of local origin (from NOx, primary sources, and vehicles) is significant but not dominant during episodes.
 - Based on extrapolation from Chicago and St. Louis and needs validation. Some convergence in literature on ~25% of nitrate as local.

Knowledge Gap	Solution
Nitric acid or ammonia limiting (whether to reduce NO _x or ammonia)	Reanalysis of existing lowa nitrogen data and newer studies Intensive N sampling winter 2009-2010
Is there a trend in regional episode occurrence? Is this related to shifts in ammonia, NOx, and SO2 emissions?	Regional modeling and additional data analysis
Control NO_x/NH_3 in the affected county, in lowa, or on a more broad regional scale?	Regional modeling
Local fraction of PM during episodes (25% ?) but with very high uncertainty, balance of primary and secondary, and source categories with most leverage	Regional modeling Source apportionment study

Thank you

Questions

