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OVERVIEW OF UNCERTAINTY  ANALYSIS 
 
 
  

INTRODUCTION 

Measurement is the act of assigning a value to some physical variable.  In the ideal 
measurement, the value assigned by the measurement would be the actual value of the physical 
variable intended to be measured.  However, measurement errors bring on an uncertainty in the 
correctness of the value resulting from the measurement.  To give some measure of confidence to 
the measured value, measurement errors must be identified, and their probable effect on the 
result estimated.  Uncertainty is simply an estimate of a possible value for the error in the 
reported results of a measurement.  Uncertainty analysis provides a structured and rational 
framework of evaluating the significance of the scatter (precision errors) and trends (potentially 
associated with bias errors) in the data.   

The purpose of this presentation is to provide a general view on the type of engineering 
experiments and their requirements with respect to data quality.  The terms data quality and 
uncertainty are commonly used interchangeably to reinforce the concept that intelligent design, 
execution, and documentation of an experiment add great value to the results.  In the following 
an overview of uncertainty analysis methodology is presented, and its application in the different 
phases of an experimental program is discussed.   

A companion write-up presents the uncertainty assessment methodology (Stern et al., 
1999).  The uncertainty analysis methodology adopted herein is a direct outgrowth of the AIAA 
S-071-1995 Standard (AIAA, 1995).  Stern et al. (1999) provide comprehensive guidelines for 
application/integration of uncertainty assessment methodology into the test process and 
documentation of results.   At this point it is assumed that the most basic methods used to 
understand and quantify finite data sets is familiar to the reader.  For a quick reference on the 
probability and the statistical concepts involved in data reduction and analysis Figliola and 
Beasley (1991) will suffice.  

 

ERRORS AND UNCERTAINTIES 

Errors can be considered to be composed of two components: a precision component and 
a bias component.  The precision error (ε) is the random error and will have a different value for 
each measurement.  The bias error (β) is the fixed, systematic, or constant error.  The effects of 
such errors on multiple readings of a variable X are illustrated in Figure 1.  The degree of 
inaccuracy or the total measurement error (δ) is the difference between the measured value and 
the true value.  An accurate value is one with small bias and precision errors. 

 



 
 

Figure 1.  Errors in the measurement of a variable X 
 
 
Only in rare circumstances the true value of a quantity is known.  For example, true 

values of standard measurement quantities (e.g., mass, length, time, volts, etc.) reside in national 
standards laboratories.  In general, each measurement system that is used to measure the value of 
an individual variable is influenced by a large number of elemental error sources.  The total error 
is a combination of these errors. Thus, one is forced to estimate precision error (termed precision 
limit) and bias error (termed bias limit).  The uncertainty in a given measurement of a physical 
quantity X is the estimate for the total error Ux obtained as a weighted average of the bias and 
precision limits for each reported result.  The estimation of the uncertainty is made with a C% 
confidence.  The best estimate of the true value sought in a measurement is provided by its 
sample mean value and the uncertainty in that value (estimated with a confidence C%) 

xUXX ±=  
In general, the uncertainty of a quantity is a function of the value of that quantity.  How-

ever, it is common practice to quote the same value of uncertainty for a range of values of the 
quantity, e.g., percent of full scale of an instrument.  In this presentation, all estimates are 
assumed to be made at a 95-percent confidence level (C%), meaning that the true value of the 
quantity is expected to be within the ±U interval about the experimentally determined value 95 
times out of 100. 

 



Error Sources 
Calibration errors.  Elemental errors can enter the measurement system during the 

process calibration.  There are two principal sources: (1) the bias and precision errors in the 
standard used in the calibration and (2) the manner in which the standard is applied to the 
measuring system or system component. 

Data acquisition errors.  All errors due to the actual act of measurement are referred to as 
data acquisition errors.  These errors include: actual sensor and instrument error, changes or 
unknowns in power settings and environmental conditions, and sensor installation effects on the 
measurand.  Also, the measured variable temporal and spatial variations contribute errors 
through the unknowns of finite statistics. 

Data Reduction errors.  In general measured values of several variables are combined in 
a data reduction equation to obtain the value of the final result.  The resolution of computational 
operations required to reduce the data into result is a common contribution to the total error. The 
use of curve fits and correlations with their associated unknowns also introduces data reduction 
errors into the reported test results.  

Conceptual bias errors.  In some of the cases we are not actually measuring the variable 
needed in the data reduction equation.  For example, in fluid flow in a pipe, we might need the 
average velocity but only be able to measure the velocity at one point with the equipment 
available.  The relationship between this single measurement of velocity and the average velocity 
must be inferred from auxiliary information and included as a contributor to the bias in the 
uncertainty calculation. 

Uncertainty in property values.  In many experiments, values for some of the variables in 
the data reduction equation are not measured, but rather are found from reference sources.  This 
is often the case for material properties, which are typically tabulated.  Whether we enter the 
table (100 times over a month) to obtain a property value or use a curve fit equation that 
represents the table, we will always obtain the same particular property value.  This value is not 
the true value, it is the “best estimate” based on experimental data and has an uncertainty 
associated with it.  It is assumed that all of the errors (both precision and bias) in the 
experimental property data are “fossilized” into a bias error.  In practical terms, this generally 
means that we have to estimate an uncertainty band based on the data scatter from different 
experiments 

Summary of Uncertainty Assessment Methodology 

The methodology for estimating the uncertainties in measurements, and in the 
experimental results calculated from them, must be structured to combine statistical and 
engineering concepts in a manner that can be systematically applied to each step in the data 
uncertainty assessment determination. 

The uncertainty assessment methodology is summarized in Figure 2 (adapted from 
AIAA, 1995). For each experimental result, the data reduction equation must be determined.  
Once this has been done, the Xi's that must be considered are known, and the sources of 
uncertainty for each Xi should be identified. (Note that a math model for a correction, such as for 
blockage or wall interference effects, is an Xi whose uncertainty must also be considered.) 

Once the sources of uncertainty have been identified, their relative significance should be 
established. This is often done using order of magnitude estimates of the sources.  As a "rule of 
thumb" for a given Xi, those uncertainties sources that are smaller that 1/4 or 1/5 of the largest 



sources are usually considered negligible.  Resources can then be concentrated on obtaining 
estimates of those uncertainties of most importance. 

For each Xi, estimated of the precision limit and the bias limit are then made. In most 
experimental tests, it is generally not cost effective or necessary to try to estimate precision limits 
at the elemental error source level.  It is far more effective to estimate the precision of the 
measurement systems if multiple results at same set point are available (end-to-end procedure).  
Of course, if one encounters unacceptably large precision limits, the elemental sources' 
contributions must be examined to see which need to be (or can be) improved.  It is generally 
easiest to obtain an estimate of the bias limit for Xi by estimating the bias limits of the significant 
elemental sources. 

The precision limit, bias limit, and overall uncertainty for the experimental result, r, are 
then estimated. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 2.  Summary of the uncertainty assessment methodology 
 
   



Reporting Uncertainties 

For each experimental result, the bias limit, precision limit, and overall uncertainty 
should be reported.  For situations in which the large sample assumption is not applicable, the 
small sample methodology and coverage factor used should be reported and discussed.  If 
outliers are rejected, the circumstances and rationale used in rejecting them should reported.  
Details of the uncertainty assessments should be documented either in an appendix to the 
primary test report or in a separate document that can be referenced in the primary test report. 

 

EXPERIMENTS 

Experiments have a wide range of purposes.  Of particular interest are fluids engineering 
experiments conducted for science and technological advancement; research and development; 
design, test, and evaluation; and product liability and acceptance. 

 
Timewise and Sample-to-Sample Experiments 
When the measured quantity has a variability unrelated to the bias and precision errors 

inherent in the measurement system, it is helpful to distinguish between two type of experiments: 
timewise experiments and sample-to-sample experiments.  Timewise experiments are those in 
which a given entity is tested, either as function of time or at some steady-state condition in 
which data are taken over some period of time.  Examples would be testing the performance 
characteristics of a given engine, determining the friction factor for a given pipe over a range of 
Reynolds numbers. 

Sample-to-sample experiments are those in which some characteristics is determined for 
sample after sample (realization), often with the variability from sample to sample being 
significant.  In this case, sample identity can be viewed as analogous to time in a timewise 
experiment.  Examples would be determining the heating value of a certain type coal, 
determining some physical characteristics of a manufactured product for quality control 
purposes. 

 
Repetition and Replication  
The word repetition will be used in its common sense, that is, to mean that something is 

repeated.  Replication is a repetition carried out in a very specific manner.  The reason for doing 
this is that different factors influence the errors in a series of measurements depending on how 
the repetition is done. 

It is convenient to define three levels of replication: zeroth order, first order, and Nth 
order.  At the zeroth-order replication in a timewise experiment level (one experiment, multiple 
measurements, same instrumentation), the process being measured is hypothesized to be 
absolutely steady.  This allows only the variations inherent in the measuring system itself to 
contribute to precision errors.  In a sample-to sample type of experiment, this corresponds to 
consideration of a single fixed sample. 

In a first-order replication level in a timewise experiment (multiple experiments, multiple 
measurements, same instrumentation), we hypothesize that the time runs but all instrument 
identities are fixed.  At this level of replication, the variability of the experimental measurements 
is influenced by all of the factors that contribute to unsteadiness during repeated trials with the 
experimental apparatus (e.g., variations of humidity, ambient pressure, our inability to exactly 
reproduce a set point with the experimental apparatus, etc. can influence the random portion of 



the experimental uncertainty).  In considering uncertainties at the first-order replication level in a 
sample-to-sample experiment, we imagine all instruments remain the same as sample after 
sample are tested. 

The Nth-order replication level (multiple experiments, multiple measurements, multiple 
instrumentation) is used when we have to specify where the true value lies relative to our 
measurements.  Such Nth order estimates of uncertainty include the first-order replication level 
estimates of precision errors together with all of the bias errors that influence our measurements.  
For timewise experiments, at Nth order replication both time and instrument identities are 
considered to vary.  At this level, for each reading each instrument is considered to have been 
replaced by another of the same type (i.e., the bias error associated with a particular instrument 
becomes a random variable). 

 
General and Detailed Uncertainty Analysis 
In most of the experimental studies we measure the values for several variables and 

combine these in a data reduction equation to obtain the value of the desired result.  The 
measurements of the variables have uncertainties associated with them, and the values of the 
material properties that we obtain from reference sources also have uncertainties.  How do the 
uncertainties in the individual variables propagate through a data reduction equation at a result?  
This is the key question answered by the uncertainty analysis. 

In the planning phase of an experimental program, the approach we use considers only 
the general, or overall, measurement uncertainties and not the details of the bias and precision 
components.  This approach will be termed general uncertainty analysis.  It makes sense to 
consider only the overall uncertainty in each measured variable at this stage rather than worry 
about which part of the uncertainty will be to bias and which part will be due to precision errors.  
In this stage the particular equipment and instruments will not have been chosen, therefore the 
bias errors are zero and the uncertainty in the results comprises only the precision errors.  Of 
course, at this stage there are usually no samples from which to compute statistical estimates of 
the precision errors, therefore range of uncertainties in the variables are assumed. 

Once past the planning phase in an experimental program, it is desirable and useful to 
consider the details of the bias and precision errors in each measured variable, and the 
propagation of the bias and the precision errors into the result.  This is termed detailed 
uncertainty analysis as the details of the bias and precision components of the uncertainties are 
considered.  The bias is a fixed error that can be reduced by calibration.  However, the precision 
error is a variable error that can be reduced by the use of multiple readings.  This differing 
behavior of the two components of the uncertainty makes it desirable and necessary to consider 
the components separately. 

Phases of an Experimental Program 

A general experimental program can be divided in the following experimental phases 
(Coleman and Steel, 1989): planning (evaluate various approaches), design (specify 
instrumentation and details of the experimental apparatus), construction (assembly of individual 
components and calibration of instruments), debugging (trial runs), execution (experimental runs 
and data acquisition, recording and storage), data analysis (answer original questions), and 
reporting of the results (data and conclusions presented).  Use of uncertainty analysis in each of 
these phases will help to ensure maximum return for the time, effort, and financial resources 



invested.  An overview of some of the uses of uncertainty analysis in the different phases of an 
experimental program is given in Table 1. 

In the planning phase general uncertainty analysis is used to ensure that a given 
experiment can successfully answer the question of interest.  Some decisions in the preliminary 
design of an experiment can be made based on the results of a general uncertainty analysis. 

Once past the planing and preliminary design phases, the effects of bias errors and 
precision errors are considered separately using the techniques of detailed uncertainty analysis.  
This means that estimates of bias and precision limits will be made and used in the design phase, 
then in the construction, debugging, execution, and data analysis phases, and finally in the 
reporting phase of an experiment as shown in Table 1.  As an experimental program progresses 
there will be more information available to estimate the bias limit and precision limits.  This 
means that these estimates are changed during the experimental phases.  Bias limits and 
precision limits must be estimated using the best information available at the time.  Lack of 
information is no excuse for not doing an uncertainty analysis in the early phases of an 
experimental program; it is simply a reason why estimates may not be as good as they will be 
later in the program. 

 
Table 1.  Uncertainty analysis in experimentation 

Phase of 
Experiment 

Type of 
uncertainty 

analysis 

Uses of uncertainty analysis 

Planning General Choose experiment to answer a question; preliminary design 
Design Detailed Choose instrumentation (zeroth order estimates); detailed 

design (Nth order estimates) 
Construction Detailed  Guide decisions on changes 
Debugging Detailed Verify and qualify operation; first order and Nth order 

comparisons 
Execution Detailed Balance checks and monitoring operation of apparatus; choice 

of test points run 
Data 

Analysis 
Detailed  Guide to choice of analysis techniques 

Reporting Detailed Bias limits, precision limits and overall uncertainties reported 
 
 The manner in which these estimates are used can differ in timewise and sample-to-

sample experiments.  In the early stage of the design phase of a program, estimates of the bias 
limits and precision limits at the zeroth-order replication level are useful in choosing the 
instrumentation and measurement systems.  For timewise experiments, this means making 
estimates while hypothesizing a totally steady process environment.  For sample-to-sample 
experiments, it means making the estimates assuming a single, fixed sample.  The zeroth-order 
bias and precision limit estimates indicate the “best case” for a given measurement system in 
both types of experiment. 

When we move beyond this stage in a timewise experiment, we make estimates at the 
first-order and Nth order levels.  Here we consider all the factors that will influence the bias and 
precision errors in the experiment.  At the first-order replication level, we are interested in the 
variability of the experimental results for a given experimental apparatus.  The descriptor for this 
variability is Pr, the precision limit of the result.  In a timewise experiment, comparison of the 



estimated Pr and the observed scatter in the results from multiple trials at a given set point of the 
experimental apparatus is useful in debugging phase.  In a sample-to-sample experiment, first-
order estimates of Pr made before multiple samples are tested are often not very useful, since the 
variation from sample to sample is usually unknown and is one of the things to discover with the 
experiment.  After multiple samples have been tested, the difference (in a root-mean-square 
sense) between the calculated Pr from the multiple results and the zeroth-order precision limit 
estimate can be used as an estimate of the precision contribution due to sample-to-sample 
variability. 

In asking questions and making comparisons at the Nth order replication level, we are 
interested in the interval within which “the truth” lies.  This interval is described by Ur, the 
overall uncertainty in the result, which is found by combining the first order precision limit Pr 
and the bias limit Br.  Comparisons of experimental data with theoretical results or with data 
from other experiments should be made at the Nth order replication level. 
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