6.2 (a) General: $\boldsymbol{q} = \sum N_i \overline{\boldsymbol{q}}_i$ where $\overline{\boldsymbol{q}} = (\boldsymbol{\Re} \boldsymbol{q} / \boldsymbol{\Re} N_i)_{T,P,N_{j \neq i}}$ and

$$d\boldsymbol{q} = \sum \overline{\boldsymbol{q}}_i dN_i + \sum N_i d\overline{\boldsymbol{q}}_i \tag{1}$$

However, we also have that

$$d\boldsymbol{q} = \left(\frac{\boldsymbol{\Pi}\boldsymbol{q}}{\boldsymbol{\Pi}\boldsymbol{T}}\right)_{V,\underline{N}} dT + \left(\frac{\boldsymbol{\Pi}\boldsymbol{q}}{\boldsymbol{\Pi}\boldsymbol{V}}\right)_{T,\underline{N}} dV + \sum \left(\frac{\boldsymbol{\Pi}\boldsymbol{q}}{\boldsymbol{\Pi}\boldsymbol{N}_i}\right)_{T,V,N_{j\neq i}} dN_i$$
(2)

Subtracting (2) from (1) yields

$$0 = -\left(\frac{\boldsymbol{\Pi}\boldsymbol{q}}{\boldsymbol{\Pi}T}\right)_{V,\underline{N}} dT - \left(\frac{\boldsymbol{\Pi}\boldsymbol{q}}{\boldsymbol{\Pi}V}\right)_{T,\underline{N}} dV + \sum \left[\boldsymbol{\overline{q}}_{i} - \left(\frac{\boldsymbol{\Pi}\boldsymbol{q}}{\boldsymbol{\Pi}N_{i}}\right)_{T,V,N_{j\neq i}}\right] dN_{i} + \sum N_{i}d\boldsymbol{\overline{q}}_{i}$$

At constant T and V

$$0 = \sum \left[\overline{\boldsymbol{q}} - \left(\frac{\boldsymbol{\eta} \boldsymbol{q}}{\boldsymbol{\eta} N_i} \right)_{T, V, \underline{N}} \right] dN_i + \sum N_i d\overline{\boldsymbol{q}}_i$$

(general equation)

For
$$\boldsymbol{q} = A$$
, $\overline{\boldsymbol{q}}_{i} = \overline{A}_{i}$ and $\left(\frac{\boldsymbol{\Pi}\boldsymbol{q}}{\boldsymbol{\Pi}N_{i}}\right)_{T,V,N_{j\neq i}} = \left(\frac{\boldsymbol{\Pi}A}{\boldsymbol{\Pi}N_{i}}\right)_{T,V,N_{j\neq i}} = \overline{G}_{i}$. Thus,
 $\overline{\boldsymbol{q}} - \left(\frac{\boldsymbol{\Pi}\boldsymbol{q}}{\boldsymbol{\Pi}N_{i}}\right)_{T,V,N_{j\neq i}} = \overline{A}_{i} - \overline{G}_{i} = -P\overline{V}_{i}$ and
 $\sum N_{i}d\overline{A}_{i}\Big|_{T,V} = P\sum \overline{V}_{i}dN_{i}\Big|_{T,V}$ specific equation for $\boldsymbol{q} = A$

(b) Following the analysis above, we also get

$$0 = -\left(\frac{\boldsymbol{\Re}\boldsymbol{q}}{\boldsymbol{\Re}\boldsymbol{U}}\right)_{\boldsymbol{V},\underline{N}} d\boldsymbol{U} - \left(\frac{\boldsymbol{\Re}\boldsymbol{q}}{\boldsymbol{\Re}\boldsymbol{V}}\right)_{\boldsymbol{U},\underline{N}} d\boldsymbol{V} + \sum \left[\boldsymbol{\overline{q}}_{i} - \left(\frac{\boldsymbol{\Re}\boldsymbol{q}}{\boldsymbol{\Re}\boldsymbol{N}_{i}}\right)_{\boldsymbol{U},\boldsymbol{V},\boldsymbol{N}_{j\neq i}}\right] d\boldsymbol{N}_{i} + \sum N_{i} d\boldsymbol{\overline{q}}_{i}$$

and, at constant U and V

$$0 = \sum \left[\overline{\boldsymbol{q}}_{i} - \left(\frac{\boldsymbol{\Re} \boldsymbol{q}}{\boldsymbol{\Re} N_{i}} \right)_{U,V,N_{j\neq i}} \right] dN_{i} + \sum N_{i} d\overline{\boldsymbol{q}}_{j}$$

Now, choosing $\boldsymbol{q} = S$, and using that $\left(\frac{\boldsymbol{\P}S}{\boldsymbol{\P}N_i}\right)_{U,V,N_{j\neq i}} = -\frac{\overline{G_i}}{T}$, which is easily

derived, yields

$$-T\sum N_i d\overline{S}_i \big|_{U,V} = \sum \overline{H}_i dN_i \big|_{U,V}$$

(c) Following a similar analysis to those above, we obtain

$$0 = -\left(\frac{\boldsymbol{\Re}\boldsymbol{q}}{\boldsymbol{\Re}\boldsymbol{S}}\right)_{V,\underline{N}} d\boldsymbol{S} - \left(\frac{\boldsymbol{\Re}\boldsymbol{q}}{\boldsymbol{\Re}\boldsymbol{V}}\right)_{S,\underline{N}} d\boldsymbol{V} + \sum \left[\boldsymbol{\overline{q}} - \left(\frac{\boldsymbol{\Re}\boldsymbol{q}}{\boldsymbol{\Re}\boldsymbol{N}_{i}}\right)_{S,V,N_{j\neq i}}\right] dN_{i} + \sum N_{i} d\boldsymbol{\overline{q}}_{i}$$

which, at constant V and S, reduces to

$$0 = \sum \left[\overline{\boldsymbol{q}} - \left(\frac{\boldsymbol{f} \boldsymbol{q}}{\boldsymbol{f} N_i} \right)_{S, V, N_{j \neq i}} \right] dN_i + \sum N_i d\overline{\boldsymbol{q}}_i$$

Finally, using $\boldsymbol{q} = U$, and $(\P U / \P N_i)_{S,V,N_{j\neq i}} = \overline{G_i}$ yields

$$\sum N_i d\overline{U}_i \Big|_{S,V} = \sum \left\{ -P \overline{V}_i + T\overline{S}_i \right\} dN_i \Big|_{S,V}$$

6.3 (a) At constant U and V, S = maximum at equilibrium

$$S = S^{\mathrm{I}} + S^{\mathrm{II}} = \sum_{i=1}^{C} N_i^{\mathrm{I}} \overline{S}_i^{\mathrm{I}} + \sum_{i=1}^{C} N_i^{\mathrm{II}} \overline{S}_i^{\mathrm{II}}$$

but

$$dS = 0 = \left(\frac{\P S^{\mathrm{I}}}{\P U^{\mathrm{I}}}\right)_{V,\underline{N}} dU^{\mathrm{I}} + \left(\frac{\P S^{\mathrm{I}}}{\P V^{\mathrm{I}}}\right)_{U,\underline{N}} dV^{\mathrm{I}} + \sum \left(\frac{\P S^{\mathrm{I}}}{\P N_{i}^{\mathrm{I}}}\right)_{U,V,N_{j\neq i}} dN_{i}^{\mathrm{I}} + \left(\frac{\P S^{\mathrm{II}}}{\P U^{\mathrm{II}}}\right)_{V,\underline{N}} dU^{\mathrm{II}} + \left(\frac{\P S^{\mathrm{II}}}{\P V^{\mathrm{II}}}\right)_{U,\underline{N}} dV^{\mathrm{II}} + \sum \left(\frac{\P S^{\mathrm{II}}}{\P N_{i}^{\mathrm{II}}}\right)_{U,V,N_{j\neq i}} dN_{i}^{\mathrm{II}}$$

Since $U = U^{I} + U^{II} = \text{constant}, \ dU^{II} = -dU^{I}$

Since $V = V^{I} + V^{II} = \text{constant}$, $dV^{II} = -dV^{I}$ and since $N_i = N_i^{I} + N_i^{II} = \text{constant}$, $dN_i^{II} = -dN_i^{I}$ Also,

$$\left(\frac{\P S}{\P U}\right)_{V,\underline{N}} = \frac{1}{T}; \left(\frac{\P S}{\P V}\right)_{U,\underline{N}} = \frac{P}{T} \text{ and } \left(\frac{\P S}{\P N_i}\right)_{U,V,N_{j\neq i}} = -\frac{\overline{G_i}}{T}$$

(see previous problem)

Thus

$$\begin{split} dS &= 0 = \left(\frac{1}{T^{\mathrm{I}}} - \frac{1}{T^{\mathrm{II}}}\right) dU^{\mathrm{I}} + \left(\frac{P^{\mathrm{I}}}{T^{\mathrm{I}}} - \frac{P^{\mathrm{II}}}{T^{\mathrm{II}}}\right) dV^{\mathrm{I}} - \sum_{i} \left(\frac{\overline{G}_{1}^{\mathrm{I}}}{T^{\mathrm{I}}} - \frac{\overline{G}_{1}^{\mathrm{II}}}{T^{\mathrm{II}}}\right) dN_{i}^{\mathrm{I}} \\ \Rightarrow T^{\mathrm{I}} &= T^{\mathrm{II}}; \ P^{\mathrm{I}} = P^{\mathrm{II}}; \ \text{and} \ \overline{G}_{i}^{\mathrm{I}} = \overline{G}_{i}^{\mathrm{II}} \end{split}$$

for equilibrium in a closed system at constant U and V.

(b) For a closed system at constant S and V, U has an extremum. Thus

$$\begin{split} dU &= 0 = \left(\frac{\mathcal{\Pi}U^{\mathrm{I}}}{\mathcal{\Pi}S^{\mathrm{I}}}\right)_{V,\underline{N}} dS^{\mathrm{I}} + \left(\frac{\mathcal{\Pi}U^{\mathrm{I}}}{\mathcal{\Pi}V^{\mathrm{I}}}\right)_{S,\underline{N}} dV^{\mathrm{I}} + \sum_{i} \left(\frac{\mathcal{\Pi}U^{\mathrm{I}}}{\mathcal{\Pi}N^{\mathrm{I}}_{i}}\right)_{S,V,N_{j\neq i}} dN^{\mathrm{I}}_{i} \\ &+ \left(\frac{\mathcal{\Pi}U^{\mathrm{II}}}{\mathcal{\Pi}S^{\mathrm{II}}}\right)_{V,\underline{N}} dS^{\mathrm{II}} + \left(\frac{\mathcal{\Pi}U^{\mathrm{II}}}{\mathcal{\Pi}V^{\mathrm{II}}}\right)_{S,\underline{N}} dV^{\mathrm{II}} + \sum_{i} \left(\frac{\mathcal{\Pi}U^{\mathrm{II}}}{\mathcal{\Pi}N^{\mathrm{II}}_{i}}\right)_{U,V,N_{j\neq i}} dN^{\mathrm{II}}_{i} \end{split}$$

but S, V and N_j , $j = 1, \dots, C$ are constant. Thus

$$dU = 0 = (T^{\mathrm{I}} - T^{\mathrm{II}})dS^{\mathrm{I}} + (P^{\mathrm{I}} - P^{\mathrm{II}})dV^{\mathrm{I}} + \sum_{i} (\overline{G_{i}}^{\mathrm{I}} - \overline{G_{i}}^{\mathrm{II}})dN_{i}^{\mathrm{I}}$$
$$\Rightarrow T^{\mathrm{I}} = T^{\mathrm{II}}, \ P^{\mathrm{I}} = P^{\mathrm{II}} \text{ and } \overline{G_{i}}^{\mathrm{I}} = \overline{G_{i}}^{\mathrm{II}}$$

for equilibrium in a closed system at constant S and V.

6.4 (a) For a closed system at constant T and V, A is a minimum at equilibrium; thus $dA_{V, T} = 0$. From Eqn. (6.2-5)

$$dA = -PdV - SdT + \sum \overline{G}_i dN_i \text{ or } dA|_{V,T} = \sum \overline{G}_i dN_i$$

But, $N_i = N_{i,0} + \mathbf{n}_i X$. Thus $dN_i = \mathbf{n}_i dX$ and

$$dA|_{V,T} = (\sum \mathbf{n}_i \overline{G}_i) dX = 0 \text{ or } \left(\frac{\P A}{\P X}\right)_{V,T} = \sum_i \mathbf{n}_i \overline{G}_i = 0.$$

(b) For a closed system at constant U and V, $S = \text{maximum, or } dS|_{U,V} = 0$. From

Eqn. (6.2-4)
$$dS = \frac{1}{T}dU + \frac{P}{T}dV - \frac{1}{T}\sum \overline{G}_i dN_i$$
; thus

Chapter 6

$$dS|_{U,V} = -\frac{1}{T} \sum \overline{G}_i dN_i \text{ or } dS|_{U,V} = -\frac{1}{T} \left(\sum \overline{G}_i \boldsymbol{n}_i \right) dX$$

and

$$\frac{\P S}{\P X}\Big|_{U,V} = -\frac{1}{T} \sum_{i} \boldsymbol{n}_{i} \overline{G}_{i} = 0$$

6.5 Let m_i = molecular weight of species *i*. Multiplying Eqn. (6.3-2a) by m_i and summing over all species *i* yields, for a *closed* system

$$\sum m_i N_i = \text{total mass in system} = \sum_{\substack{\text{total mass in system initially}}} X_i N_{i,0} + X \sum n_i m_i$$

However, since the total mass is a conserved quantity,

$$\sum m_i N_i = \sum m_i N_{i,0} \Rightarrow X \sum \mathbf{n}_i m_i = 0$$
, where X can take on any value.

Consequently, if this equation is to be satisfied for all values of X, then $\sum \mathbf{n}_i m_i = 0$!

Similarly, in the multi-reaction case, starting from $N_i = N_{i,0} + \sum_{j=1}^{M} n_{ij} X_j$, we get

$$\sum_{i=1}^{C} m_i N_i = \sum_{i=1}^{C} m_i N_{i,o} + \sum_{i=1}^{C} m_i \sum_{j=1}^{M} \boldsymbol{n}_{ij} X_j \Longrightarrow \sum_{i=1}^{C} m_i \sum_{j=1}^{M} \boldsymbol{n}_{ij} X_j = 0 = \sum_{j=1}^{M} X_j \sum_{i=1}^{C} \boldsymbol{n}_{ij} m_i$$

Since the X_j 's are not, in general, equal to zero, we have

$$\sum_{i=1}^{C} \mathbf{n}_{ij} m_i = 0$$

In particular, for the reaction $H_2O = H_2 + (1/2)O_2$, or $H_2 + (1/2)O_2 - H_2O = 0$, we have

$$\sum_{i} \mathbf{n}_{ij} m_{i} = (+1)(2) + \left(\frac{1}{2}\right)(32) + (-1)(18) = 0.$$

6.6 From Eqns. (6.6-4) we have

$$\overline{V_1} = \underline{V}_1 + \Delta \underline{V}_{\text{mix}} + x_2 \frac{\mathcal{I}(\Delta \underline{V}_{\text{mix}})}{\mathcal{I} x_1} \Big|_{T,P}$$
(1)

and

Chapter 6

$$\overline{V_2} = \underline{V_2} + \Delta \underline{V}_{\text{mix}} + x_1 \frac{\mathcal{I}(\Delta \underline{V}_{\text{mix}})}{\mathcal{I} x_1} \Big|_{T,P}$$
(2)

Now since T, P and X, are the independent variables, we have that

0 since pure component volume is a function of

$$d \overline{v_1}\Big|_{T, P} = d \underbrace{\mathcal{I}_1}_{T, P} + d \underbrace{(\Delta \underline{v}_{mix})}_{T, P} + d \underbrace{x_2 \frac{\mathcal{I}(\Delta \underline{v}_{mix})}{\mathcal{I}_{x_1}}}_{T, P} + d \underbrace{x_2 \frac{\mathcal{I}(\Delta \underline{v}_{mix})}{\mathcal{I}_{x_1}}}_{T, P} = \frac{\mathcal{I}(\Delta \underline{v}_{mix})}{\mathcal{I}_{x_1}}\Big|_{T, P} + \frac{\mathcal{I}(\Delta \underline{v}_{mix})}{\mathcal{I}_{x_1}}\Big|_{T, P} \frac{\mathcal{I}_{x_2}}{\mathcal{I}_{x_1}} dx_1 + x_2 \frac{\mathcal{I}^2(\Delta \underline{v}_{mix})}{\mathcal{I}_{x_1}^2}\Big|_{T, P} dx_1$$

$$= x_2 \frac{\mathcal{I}^2(\Delta \underline{v}_{mix})}{\mathcal{I}_{x_1}^2}\Big|_{T, P} dx_1 \text{ since } \frac{\mathcal{I}_{x_2}}{\mathcal{I}_{x_1}} = -1$$

Similarly

$$\left. d\overline{V_2} \right|_{T,P} = -x_1 \frac{ \mathscr{I}^2(\Delta \underline{V}_{\text{mix}})}{\mathscr{I} x_1^2} \right|_{T,P} dx_1$$

Thus

$$\sum x_i \boldsymbol{a} \overline{V_i}\Big|_{T,P} = x_1 x_2 \frac{\boldsymbol{f}^2(\Delta \underline{V}_{\text{mix}})}{\boldsymbol{f} x_1^2}\Big|_{T,P} dx_1 - x_2 x_1 \frac{\boldsymbol{f}^2(\Delta \underline{V}_{\text{mix}})}{\boldsymbol{f} x_1^2}\Big|_{T,P} dx_1 \equiv 0$$

Thus, $\overline{V_1}$ and $\overline{V_2}$ given by equations (1) and (2) identically satisfy the Gibbs-Duhem equation $\sum x_i d\overline{q}_i|_{T,P} = 0$.

A similar argument applies for the partial molar enthalpies of Eqn. (6.6-9).

6.7 (also available as a Mathcad worksheet)

The students can solve this problem by drawing tangent lines to the $\Delta \underline{V}_{mix}$ curves. Polak and Lu smoothed their data using the Redhich-Kister equation (see Eqn. (6.6-5a)). That is, they fitted their data to

$$\Delta \underline{V}_{\min} = x_1 x_2 \sum_{j=1}^{n} C_j (x_2 - x_1)^{j-1} = x_1 (1 - x_1) \sum C_j (1 - 2x)^{j-1}$$

Now

$$\frac{\P(\Delta \underline{V}_{\min})}{\P x_1} = (1 - x_1) \sum C_j (1 - 2x_1)^{j-1}$$
$$-x_1 \sum C_j (1 - 2x_1)^{j-1} - 2x_1 (1 - x_1) \sum C_j (j-1) (1 - 2x_1)^{j-2}$$
$$\overline{V_1} - \overline{V_1} = (\Delta \underline{V}_{\min}) - x_2 \frac{\P(\Delta \underline{V}_{\min})}{\P x_1} = (1 - x_1)^2 \{A - 2x_1B\} \qquad (a)$$

Thus

and

$$\overline{V_2} - \underline{V_2} = (\Delta \underline{V}_{\text{mix}}) - x_1 \frac{\P(\Delta \underline{V}_{\text{mix}})}{\P x_1} = x_1^2 \{A + 2x_2B\}$$
(2)

where

$$A = \sum_{j=1}^{n} C_{j} (1 - 2x_{1})^{j-1} \text{ and } B = \sum_{j=1}^{n} C_{j} (j-1)(1 - 2x_{1})^{j-2}$$

Taking species 1 to be methyl formate, Polak and Lu found

I have used the equations above and the constants given to find $\overline{V_1} - \underline{V_1}$ and $\overline{V_2} - \overline{V_2}$, since this leads to more accurate results than the graphical method. The results are tabulated and plotted below. Methyl formate - Methanol

	$x_{\rm MF}$	0	0.1	0.2	0.3	0.4	0.5
$\Delta \underline{V}_{mix}$	(cc/mol)	0	-0.039	-0.065	-0.080	-0.085	-0.083
$\overline{V_1} - \underline{V_1}$		-0.459	-0.329	-0.225	-0.148	-0.093	-0.058
$\overline{V_2} - \underline{V_2}$		0	-0.007	-0.025	-0.051	-0.080	-0.109
	X. cr	0.6	0.7	0.8	0.9	1.0	

	MF					
$\Delta \underline{V}_{mix}$	(cc/mol)	-0.075	-0.063	-0.047	-0.027	0
$\overline{V_1} - \underline{V_1}$		-0.035	-0.021	-0.011	-0.004	0
$\overline{V_2} - \underline{V_2}$		-0.136	-0.162	-0.192	-0.236	-0.309

Thus $\overline{V}_{MF} = 62.78 + (\overline{V}_1 - \underline{V}_1) \text{ cc/mol or } 10^{-3} \text{ m}^3/\text{kmol}$. $\overline{V}_M = 40.73 + (\overline{V}_2 - \underline{V}_2)$.

Methyl formate - Ethanol

	$x_{\rm MF}$	0	0.1	0.2	0.3	0.4	0.5
$\Delta \underline{V}_{mix}$	(cc/mol)	0	0.080	0.136	0.174	0.196	0.203
$\overline{V_1} - \underline{V_1}$		0.935	0.682	0.507	0.381	0.285	0.205
$\overline{V_2} - \underline{V}_2$		0	0.013	0.043	0.085	0.137	0.201
	$x_{\rm MF}$	0.6	0.7	0.8	0.9	1.0	
$\Delta \underline{V}_{mix}$	(cc/mol)	0.196	0.174	0.134	0.077	0	
$\overline{V_1} - \underline{V_1}$		0.138	0.081	0.037	0.010	0	
$\overline{V_2} - \underline{V_2}$		0.284	0.390	0.522	0.680	0.861	

Chapter 6

6.8 This problem is similar to the last one, and will be treated in a similar fashion. Fenby and Ruenkrairergasa give their data in the form

$$\Delta \underline{H}_{\min}(J/mol) = x_2(1-x_2) \sum_{j=1}^{n} C_j (1-2x_2)^{j-1}$$
(1)

where component 2 is the fluorobenzene. The constants given in the aforementioned reference and Fenby and Scott J. Phys. Chem **71**, 4103 (1967) are given below

System	C_1	C_2	C_3	C_4
$C_6H_6 - C_6F_5Cl$	-2683	929	970	0
$C_6H_6 - C_6F_5Br$	-3087	356	696	0
$C_6H_6-C_6F_5I$	-4322	-161	324	0
$C_{6}H_{6}-C_{6}F_{6}$	-1984	+1483	+1169	0
$C_{6}H_{6} - C_{6}F_{5}H$	230	+578	+409	+168

If we replace x_2 with $1 - x_1$ in Eqn. (1), we regain the equation of the previous illustration, except for a factor of $(-1)^{j-1}$ in the sum and the corresponding places in the other equations.

$x_{C_6H_6}$	$\Delta \underline{H}_{mix}$	$\left(\overline{H} - \underline{H}\right)_{C_6H_6}$	$\left(\overline{H} - \underline{H}\right)_{C_6F_5Cl}$	$x_{C_6F_5Cl}$
0	0	-2642	0	1.0
0.1	-252	-2171	-39.2	0.9
0.2	-463	-1790	-130	0.8
0.3	-609	-1466	-242	0.7
0.4	-679	-1175	-349	0.6
0.5	-671	-903	-439	0.5
0.6	-590	-646	-506	0.4
0.7	-453	-409	-555	0.3
0.8	-284	-205	-601	0.2
0.9	-119	-57.8	-666	0.1
1.0	0	0	-784	0

[Note: J/mol]

	Ce	$_{6}H_{6} - C_{6}F_{5}$	Br	C	${}_{6}H_{6}-C_{6}F$	5I	
$x_{C_6H_6}$	$\Delta \underline{H}_{\rm mix}$	$\left(\overline{H}-\underline{H}\right)$	$\left(\overline{H}-\underline{H}\right)$	$\Delta \underline{H}_{mix}$	$\left(\overline{H}-\underline{H}\right)$	$\left(\overline{H}-\underline{H}\right)$	$x_{C_6F_5x}$
		C_6H_6	C ₆ F ₅ Br		C_6H_6	C ₆ F ₅ I	
0	0	-2747	0	0	-3837	0	1.0
0.1	-263	-2248	-42.9	-359	-3119	-52.1	0.9
0.2	-488	-1829	-153	-657	-2489	-200	0.8
0.3	-654	-1469	-306	-883	-1937	-431	0.7
0.4	-751	-1149	-486	-1026	-1456	-740	0.6
0.5	-772	-861	-683	-1081	-1040	-1121	0.5
0.6	-717	-600	-893	-1042	-689	-1572	0.4
0.7	-595	-370	-1120	-910	-402	-2095	0.3
0.8	-420	-181	-1374	-688	-187	-2695	0.2
0.9	-212	-50.0	-1671	-382	-48.9	-3379	0.1
1.0	0	0	-2035	0	0	-4159	0

~ --

Chapter 6

	C	$C_6H_6 - C_6F$	6	C	$_{6}H_{6}-C_{6}F_{6}$	5H	
$x_{C_6H_6}$	$\Delta \underline{H}_{mix}$	$\left(\overline{H}-\underline{H}\right)$	$\left(\overline{H}-\underline{H}\right)$	$\Delta \underline{H}_{mix}$	$\left(\overline{H}-\underline{H}\right)$	$\left(\overline{H}-\underline{H}\right)$	$x_{C_6F_5x}$
		C_6H_6	C_6F_6		C_6H_6	C_6F_5H	
0	0	-2298	0	0	61.0	0	1.0
0.1	-218	-1899	-31.2	-2.2	36.2	-1.1	0.9
0.2	-392	-1590	-93.0	-3.9	-2.8	+6.8	0.8
0.3	-502	-1332	-146	13.5	-42.3	+37.4	0.7
0.4	-536	-1097	-162	31.4	-72.3	+100	0.6
0.5	-496	-867	-125	57.5	-87.0	+202	0.5
0.6	-394	-637	-28.9	86.9	-84.5	344	0.4
0.7	-253	-413	+121	110	-66.7	524	0.3
0.8	-108	-212	+308	116	-39.4	+737	0.2
0.9	-4.5	-60.9	+503	85.9	-12.6	+973	0.1
1.0	0	0	+688	0	0	1217	0
			\uparrow		\uparrow	\uparrow	

 $\uparrow \qquad \uparrow \qquad \uparrow$ Note: Changes in sign in column

Relations among the unknowns $T^{S} = T^{V}$, $P^{S} = P^{V}$, no phase equilibrium relations, but 3 chemical equilibrium relations of the form $\sum \mathbf{n}_{ij}\overline{G_{i}} = 0$.

8 unknowns- 5 eqns.= 3 unspecified unknowns or 3 degrees of freedom

- 6.10 (a) In general, for a binary, two-phase mixture (C = 2, M = 0, P = 2)
 F = C M P + 2 = 2 0 2 + 2 = 2 degrees of freedom. However, for an azeotrope there is the additional restriction x₁ = y₁, which eliminates one degree of freedom. Thus, there is only 1 degree of freedom for a binary, azeotropic system.
 - (b) In osmotic equilibrium $P^{I} \neq P^{II}$, since the membrane is capable of supporting a pressure difference, and $\overline{G}_{2}^{I} \neq \overline{G}_{2}^{II}$, where 2 is the species which does not pass through the membrane. Therefore, the independent unknowns are T^{I} , P^{I} , x_{1}^{I} , T^{II} , P^{II} and x_{1}^{II} . [Note, x_{2}^{I} and x_{2}^{II} are not independent unknowns since $x_{2}^{I} = 1 - x_{1}^{I}$ and $x_{2}^{II} = 1 - x_{1}^{II}$]. There are *two* equilibrium relations between these six unknowns: viz. $T^{I} = T^{II}$ and $\overline{G}_{1}^{I} = \overline{G}_{1}^{II}$. Consequently, there are four degrees of freedom ... that is, as we shall see in Sec. 8.7, if T, P^{I} , P^{II} and x_{1}^{I} are specified, x_{1}^{II} will be fixed.
 - (c) Case I: $M = 0, C = 2, P = 2 \Rightarrow F = 2 0 2 + 2 = 2$ Case II: $M = 0, C = 2, P = 3 \Rightarrow F = 2 - 0 - 3 + 2 = 1$
- 6.11 (a) Gibbs Phase Rule: F = C M P + 2 C = 2, M = 0 ⇒ F = 2 - 0 - P + 2 = 4 - P degrees of freedom. Therefore, a maximum of 4 phases can exist at equilibrium (for example a solid, two liquids and a vapor, or two solids, a liquid and a vapor, etc.)
 - (b) Gibbs Phase Rule: F = C M P + 2 C = 2, M = 1 ⇒ F = 2 - 1 - P + 2 = 3 - P degrees of freedom. Therefore, a maximum of e phases can exist at equilibrium (for example a two liquids and a vapor, or a solid, a liquid and a vapor, etc.)

6.12 (a)
$$\frac{dN_i}{dt} = \dot{N}_i + \dot{N}_{i,\text{rxn}}$$
$$\frac{dU}{dt} = \sum \dot{N}_i \overline{H}_i + \dot{Q} - \swarrow_s^{0} - P \frac{dV}{dt}$$
$$\frac{dS}{dt} = \sum \dot{N}_i \overline{S}_i + \frac{\dot{Q}}{T} + \dot{S}_{\text{gen}}$$
$$T \frac{dS}{dt} - T \sum \dot{N}_i \overline{S}_i - T \dot{S}_{\text{gen}} = \dot{Q}$$

$$\frac{dU}{dt} = \sum \dot{N}_i \overline{H}_i + T \frac{dS}{dt} - T \sum \dot{N}_i \overline{S}_i - T \dot{S}_{gen} - P \frac{dV}{dt}$$

$$\frac{dU}{dt} + P \frac{dV}{dt} - T \frac{dS}{dt} = \sum \dot{N}_i (\overline{H}_i - T \overline{S}_i) - T \dot{S}_{gen}$$

$$\frac{dU}{dt} + P \frac{dV}{dt} - T \frac{dS}{dt} = \sum \dot{N}_i \overline{m} - T \dot{S}_{gen} = \sum \left(\frac{dN_i}{dt} - n_i \frac{dX}{dt}\right) \overline{m} - T \dot{S}_{gen}$$
General expression
Now
System is only permeable to species 1
$$\frac{dU}{dt} + P \frac{dV}{dt} - T \frac{dS}{dt} - \left(\frac{dN_1}{dt} - n_1 \frac{dX}{dt}\right) \mathbf{m} = -T \dot{S}_{gen} \le 0$$
When T and P constant
$$\frac{d}{dt} (U + PV - TS) - \frac{d}{dt} [(N_1 - n_1 X) \mathbf{m}] \le 0$$

$$\Rightarrow G - (N_1 - n_1 X) \mathbf{m} = \text{minimum at equilibrium}$$
(b) When T and V are constant
$$\frac{d}{dt} (U - TS) - \frac{d}{dt} [(N_1 - n_1 X) \mathbf{m}] \le 0$$

$$\Rightarrow A - (N_1 - n_1 X) \mathbf{m} = \text{minimum at equilibrium}$$

6.13 (a)
$$2N \rightarrow N_2$$

 $2O \rightarrow O_2$
 $2N + O \rightarrow N_2O$ $N_2 + \frac{1}{2}O_2 \rightarrow N_2O$
 $2N + 2O \rightarrow 2NO$ $N_2 + O_2 \rightarrow 2NO$
 $2N + 4O \rightarrow N_2O_4$ $N_2 + 2O_2 \rightarrow N_2O_4$
 $2N + 4O \rightarrow 2NO_2$ $N_2 + 2O_2 \rightarrow 2NO_2$
 $2N + 5O \rightarrow N_2O_5$ $N_2 + \frac{5}{2}O_2 \rightarrow N_2O_5$

 \Rightarrow 5 independent reactions

- (b) F = C M P + 2 = 7 5 1 + 2 = 9 6 = 3F = 3 degrees of freedom
- (c) 1 degree of freedom used in $O_2: N_2$ ratio \Rightarrow 2 degrees of freedom

6.14 Mass balance: $M_1 + M_2 = M_f$ Molecular weight $H_2O = 18.02$ g/mol Energy balance: $M_1\hat{U}_1 + M_2\hat{U}_2 = M_f\hat{U}_f$ In each case the system is M_1 kg of solution $1 + M_2$ kg of solution 2. Since Q = 0, $W_s = 0$ (adiabatic mixing) For liquids $\hat{U} = \hat{H}$. Thus we have

$$\hat{H}_f = \frac{M_1 H_1 + M_2 H_2}{M_1 + M_2}$$

Chapter 6

when $M_1 = M_2$; $\hat{H}_f = \frac{1}{2} (\hat{H}_1 + \hat{H}_2)$.

(a) Read from Figure 6.1-1

$$H_1 = 6.9 \times 10^3 \text{ J/kg}$$

 $\hat{H}_2 = -6.1 \times 10^3 \text{ J/kg}$

Thus
$$\hat{H}_f = \frac{1}{2} (5.410 \times 10^4) = 2.705 \times 10^4 \text{ J/kg}$$

To find the composition, so a sulfuric acid balance

$$\mathbf{r}_1 M_1 + \mathbf{r}_2 M_2 = \mathbf{r}_f M_f \Rightarrow \mathbf{r}_f = \frac{1}{2} (\mathbf{r}_1 + \mathbf{r}_2) \text{ since } M_1 = M_2$$

where \mathbf{r}_i = weight percent of *i*th flow stream.

Thus $\mathbf{r}_f = \frac{1}{2}(10+90) = 50$ wt % sulfuric acid. From Figure 6.1-1

50 wt % H₂SO₄
$$\hat{H} = \hat{U} = 2.705 \times 10^4 \text{ J/kg} \Rightarrow T_f \sim 110^{\circ} \text{C}$$

(b) Here $\hat{H}_1 = 6.9 \times 10^3 \text{ J/kg}$,

$$\hat{H}_2 = -3.186 \times 10^5 \text{ J/kg} \Rightarrow \hat{H}_f = \frac{1}{2}(69 - 318.6) \times 10^3 = -1.56 \times 10^5 \text{ J/kg}$$
 and $\mathbf{r}_1 = 10 \text{ wt \%}$, $\mathbf{r}_2 = 60 \text{ wt \%} \Rightarrow \mathbf{r}_f = 35 \text{ wt \%}$. Using Figure 6.1-1, $T_f \sim 22^\circ \text{C}$.

Notice that there is a balance between the energy released in mixing, $\Delta \hat{H}_{mix}$, and the energy absorbed in heating the mixture, $C_{\rm P}\Delta T$. In case (a), $\Delta \hat{H}_{mix}$ is very large, and $T_f > T_1$ or T_2 , while in case (b) $\Delta \hat{H}_{mix}$ is smaller, so that $T_f \sim T_1$.

6.15 (a) MW $H_2O = 1802 \text{ g/mol}$; MW $H_2SO_4 = 9808 \text{ g/mol}$

$$100 \text{ g H}_2\text{O} = 555 \text{ mol}$$

 $100 \text{ g H}_2\text{SO}_4 = 1.02 \text{ mol}$

Note: When these are mixed, a solution containing 5.44 mol H₂O /mol acid is formed. $\Delta \underline{H}_s$ for such a solution is -58,390 J/mol acid. Thus,

total heat released = $1.02 \text{ mol acid} \times (-58,390 \text{ J/mol acid}) = -59,558 \text{ J}$

(Negative sign means that heat is released!)

(b) Adding another 100 grams of water produces a solution which contains 10.88 mol H_2O /mol acid. From the graph $\Delta \underline{H}_s = -64,850$ J/mol acid. However, -58,390 J/mol of acid were released in preparing the first solution, so that only -6,460 J/mol acid, or 6,590 J, are released on this further dilution.

(c) 60 wt % $H_2SO_4 \Rightarrow \frac{40/18.02}{60/98.08} = 3.629$ moles $H_2O/moles$ acid for which

 $\Delta \underline{H}_{s} = -52,300 \text{ J/mol acid}, \text{ and}$

$$\Delta H_{\rm s} = -52,300 \text{ J/mol acid} \times \frac{60 \text{ mol acid}}{98.08} = -31,990 \text{ J}$$

Note: Enthalpy of 60 WT% solution is -31,990 J relative to pure components at the same temperature. Similarly 25 wt % H₂SO₄ \Rightarrow 16.27 mol H₂O/mol acid , $\Delta \underline{H}_{s} \sim -68,830$ J/mol acid and

$$\Delta H_{\rm s} = -68,830 \text{ J/mol acid} \times \frac{0.25 \times 75}{98.08} = -13,160 \text{ J}$$

Final solution =175 grams; 78.75 grams acid =0.803 mol,

96.25 grams water = 5.347 mol \Rightarrow 6.66 mol H₂O/mol acid. So that

$$\Delta \underline{H}_{s} = -60,670 \text{ J/mol acid}$$

$$\Delta H_{s} = -48,720 \text{ J}$$

Thus, enthalpy change on mixing, ΔH_{mix} is

$$\Delta H_{\rm mix} = -48,720 - (-31,990 - 13,160) = -3570 \, \rm J$$

Thus, 3570 J = 357 kJ must be *removed* to keep solution isothermal!

(d) For 1 mole of solute:
$$(1+N_2)\underline{H}_{mix} = \underline{H}_1 + N_2\underline{H}_2 + 1 \cdot \Delta \underline{H}_s \left(\frac{N_2}{N_1}\right)$$
 (argument of

 $\Delta \underline{H}_{\rm s}$) and for N_1 moles of solute and N_2 moles of solvent.

$$(N_1 + N_2)\underline{H}_{\text{mix}} = N_1\underline{H}_1 + N_2\underline{H}_2 + N_1\Delta\underline{H}_s\left(\frac{N_2}{N_1}\right) = H_{\text{mix}}$$

Now

$$\overline{H}_{1} = \left(\frac{\boldsymbol{\Pi}H_{\text{mix}}}{\boldsymbol{\Pi}N_{1}}\right)_{T,P} = \underline{H}_{1} + \Delta \underline{H}_{s} \left(\frac{N_{2}}{N_{1}}\right) + N_{1} \frac{\boldsymbol{\Pi}(\Delta \underline{H}_{s})}{\boldsymbol{\Pi}(N_{2}/N_{1})}\Big|_{T,P} \cdot \frac{\boldsymbol{\Pi}(N_{2}/N_{1})}{\boldsymbol{\Pi}N_{1}}\Big|_{T,P}$$

or

$$\overline{H}_1 - \underline{H}_1 = \Delta \underline{H}_s \left(\frac{N_2}{N_1} \right) - \frac{N_2}{N_1} \left[\frac{\P \Delta \underline{H}_s (N_2/N_1)}{\P (N_2/N_1)} \right]_{T,P} \text{ since } \frac{\P (N_2/N_1)}{\P N_1} = -\frac{N_2}{N_1^2}$$

Similarly, starting from $\overline{H}_2 = \left(\frac{\P H_{\text{mix}}}{\P N_2}\right)_{T,P}$ we obtain

$$\overline{H}_2 - \underline{H}_2 = \frac{\mathcal{P}\Delta \underline{H}_{\rm s}(N_2/N_1)}{\mathcal{P}(N_2/N_1)} \bigg|_{T,I}$$

(e) 50 wt % acid $\Rightarrow \frac{50/1802}{50/9808} = 5.443 \text{ mol } \text{H}_2\text{O/mol acid}$

 $\Delta \underline{H}_{s}(5.443) = -58,370 \text{ J/mol}$ and, from the accompanying graph

$$\frac{\P\Delta \underline{H}_{s}(N_{2}/N_{1})}{\P(N_{2}/N_{1})}\Big|_{\text{at }N_{2}/N_{1}=5.443} = \frac{(-91,630) - (-46,030)}{20} = -2,280 \text{ J/mol}$$

so that $\overline{H}_2 - \underline{H}_2 = -2,280$ J/mol and

Chapter 6

- **6.20** Note: Sorry about 1 set of data being given in alcohol wt% and other in water mole %, but this is the way the data appeared in the International Critical Tables.
 - (a) First will convert the data to mole fractions.

wt% A =
$$\frac{\text{kg A} \times 100}{\text{kg A} + \text{kg W}}$$
; $x_{A} = \frac{\text{kg A}/\text{MW}_{A}}{\text{kg A}/\text{MW}_{A} + \text{kg W}/\text{MW}_{W}}$
 $\Rightarrow x_{A} = \frac{\text{wt% A}}{\text{wt% A} + (100 - \text{wt% A}) \text{MW}_{A}/\text{MW}_{W}}$

Also, $\underline{V}_{mix} = \overline{MW} / \rho_{mix}$ where $\rho_{mix} =$ mixture density and \overline{MW} is the mole fraction averaged molecular weight of mixture (i.e., $\overline{MW} = \sum x_i \overline{MW}_i$) Also, $\underline{V}_A = MW_A / \rho(100 \text{ wt\% alcohol})$ and $\underline{V}_W = MW_W / \rho(0\% \text{ alcohol})$.

wt%	x _A	MW	$\underline{V}_{mix} - \sum x_i \underline{V}_i$	$\Delta \underline{V}_{mix}$ (cc/mol)
alconol				[multiply by 10^{-3} for
				m ³ /kmol]
0	0	18	18.083-18.033	0
5	0.0202	18.566	18.765-18.846	-0.081
10	0.0417	19.168	19.521-19.711	-0.190
15	0.0464	19.809	20.315-20.633	-0.318
20	0.0891	20.495	21.159-21.690	-0.531
25	0.1151	21.231	22.077-22.678	-0.601
30	0.1436	22.021	23.088-23.813	-0.725
35	0.1740	22.872	24.091-25.036	-0.945
40	0.2069	22.793	25.442-26.360	-0.918
45	0.2425	24.790	26.809-27.793	-0.984
50	0.2813	25.876	28.317-29.355	-1.038
55	0.3235	27.058	29.978-31.053	-1.075
60	0.3699	28.357	31.823-32.920	-1.097
65	0.4209	29.785	33.865-34.973	-1.108
70	0.4773	31.364	36.147-37.243	-1.096
75	0.5440	33.120	38.710-39.766	-1.056
80	0.6102	35.038	41.600-42.592	-0.992
85	0.6892	37.298	44.883-45.771	-0.888
90	0.7788	39.806	48.663-49.377	-0.714
95	0.8814	42.679	53.070-53.507	-0.437
100	1.0	46.	58.280-52.280	0

The $\Delta \underline{V}_{mix}$ data are plotted, and the graphical procedure of Sec. 6.6 used to find $(\overline{V}_A - \underline{V}_A)$ and $(\overline{V}_W - \underline{V}_W)$. Results are given in the following table.

Next note that

$$\Delta \underline{H}_{mix} \begin{pmatrix} \text{per mole} \\ \text{mixture} \end{pmatrix} = \frac{\text{Heat evolved}}{\text{per mole ethanol}} \times \frac{\text{Mole fraction}}{\text{of ethanol}} \times \frac{(-1)}{\underset{\text{evolved}}{\text{Since heat is}}}$$

Once $\Delta \underline{H}_{mix}$ is computed, graphical procedure is used to get $(\overline{H}_A - \underline{H}_A)$ and $(\overline{H}_W - \underline{H}_W)$. Table below gives $(\overline{V}_A - \underline{V}_A)$, $(\overline{V}_W - \underline{V}_W)$, $(\overline{H}_A - \underline{H}_A)$ and $(\overline{H}_W - \underline{H}_W)$ as a function of the water mole fraction.

$x_{\rm W}$	$\overline{V}_{\mathrm{W}} - \underline{V}_{\mathrm{W}}$	$\overline{V_{A}} - \underline{V}_{A}$	$\Delta \underline{H}_{mix}$	$\overline{H}_{\mathrm{W}} - \underline{H}_{\mathrm{W}}$	$\overline{H}_{A} - \underline{H}_{A}$
	cc/mol			kJ/mol	
0	-4.5	0	0.	-0.85	0
0.05			-0.0400	-0.099	+0.015
0.1	-5.0	-0.05	-0.0828	-1.15	+0.039
0.15			-0.142		
0.2	-3.43	-0.42	-0.201	-1.13	+0.038
0.25			-0.251		
0.3	-2.5	-0.78	-0.296	-0.85	-0.055
0.35			-0.337		
0.4	-1.22	-1.04	-0.382	-0.88	-0.03
0.45			-0.416		
0.5	-0.82	-1.37	-0.473	-1.02	+0.087
0.55			-0.541		
0.6	-0.58	-1.67	-0.603	-1.13	+0.183
0.65			-0.674		
0.7	-0.42	-2.0	-0.743	-1.175	+0.388
0.75			-0.805		
0.8	-0.17	-2.86	-0.854	-1.02	-0.26
0.85			-0.873	-0.79	-1.36
0.9	-0.025	-3.50	-0.780	-0.30	-5.0
0.95			-0.491		
1.0	0	-3.88	0.	0.	?
			\uparrow		\uparrow

