

# Quantitative Analysis of Circumferential Plaque Distribution in Human Coronary Arteries in Relation to Local Vessel Curvature



Andreas Wahle,<sup>1</sup> Mark E. Olszewski,<sup>1</sup> Sarah C. Vigmostad,<sup>2</sup> Rubén Medina,<sup>4</sup> A. Ümit Coşkun,<sup>5</sup> Charles L. Feldman,<sup>6</sup> Peter H. Stone,<sup>6</sup> Kathleen C. Braddy,<sup>3</sup> Theresa M. H. Brennan,<sup>3</sup> James D. Rossen,<sup>3</sup> Krishnan B. Chandran,<sup>2</sup> and Milan Sonka<sup>1</sup>

<sup>1</sup>Electrical and Computer Engineering, <sup>2</sup>Biomedical Engineering, and <sup>3</sup>Internal Medicine, The University of Iowa, Iowa City, IA; <sup>4</sup>Grupo de Ingeniería Biomédica, Universidad de Los Andes, Venezuela; <sup>5</sup>Mechanical, Industrial and Manufacturing Engineering, Northeastern University, Boston, MA; <sup>6</sup>Cardiovascular Division, Brigham & Women's Hospital, Boston, MA.

# **Background**

- Symptomatic coronary artery disease and atherosclerosis are among the leading causes of death in many countries.
- Inter-relationships between vessel geometry, hemodynamics, and plaque development need to be understood.
- 3-D Fusion of x-ray coronary angiography and intravascular ultrasound (I/US) data allows a geometrically correct representation of coronary geometry and cross-sectional morphology.
- Computational fluid dynamics (CFD) methods are well established to determine shear-stress patterns along the lumen/plaque boundaries.

#### Motivation

- It has been observed that plaque tends to accumulate on the inner curvature rather than on the outer curvature of a vessel (Figure 1).
- Simulations in idealized tubular phantoms of constant curvature indicate lower wall shear stress on the inner curvature (Figure 2).
- Given that low wall shear stress is associated with plaque development, can a direct relation between local curvature and circumferential plaque distribution be shown in vivo?





Figure 1: Coronary angiogram and 3-D reconstruction with plaque included by color coding – arrows indicate plaque accumulation on the inner vessel curvature



Figure 2: Shear-stress distribution in an idealized curved tube phantom – low shear stress coincides with the inner curvature of the tube.



Figure 3: IVUS image showing eccentric plaque.



Figure 4: Example of a 3-D reconstructed fusion model

## Methods

# (a) 3-D Fusion

- Lumen/plaque and media/adventitia contours are segmented semi-automatically from the IVUS data, as acquired with end-diastolic nating
- The IVUS catheter path is determined from the angiograms and reconstructed into 3-D space.
- · Fusion yields the final 3-D model (Figure 4).

## (b) Plaque Thickness

- Contours resulting from 3-D fusion are initially oriented relative to the catheter.
- Thus, contours are resampled with respect to the vessel centroid, forming a reliable centerline over all frames.
- Plaque thickness is measured along 72 radial lines originating from each centroid as the 3-D Fuclidean distance between the contours

#### (c) Curvature Index

- The local curvature index combines two parameters for each contour point:
  - The magnitude of the local vessel curvature;
  - 2. The circumferential position of the contour point relative to the curvature direction.
- Directly derived from curvature as defined in differential geometry (Frenet-Serret formulas; Figure 5, next column).





Figure 5: Curvature and local curvature index

• The curvature index  $\kappa_{\text{idx}}(s,i)$  of i-th contour point f(s,i) in frame s depends on the vector v from the local centroid c to f, and the curvature vector:

$$\begin{array}{lcl} \vec{v}(s,i) & = & \vec{f}(s,i) - \vec{c}(s) \\ \kappa_{\mathrm{idx}}(s,i) & = & \kappa(s) \, \vec{n}(s) \cdot \left( \frac{\vec{v}(s,i)}{\|\vec{v}(s,i)\|} \right) \end{array}$$

- Positive Kidy indicates inner curvature;
- Negative  $\kappa_{\mathrm{idx}}$  indicates <u>outer</u> curvature;
- Maximum absolute  $|\kappa_{\mathrm{idx}}|$  corresponds to  $\kappa$  in s.

# (d) Classification of Regions

- From step (b), an average plaque thickness is calculated for each frame; each contour point is labeled with a for plaque thickness above and b for below that average.
- From step (c), each contour point is labeled with i for inner and o for outer curvature; any point for which  $|\kappa_{idc}|$  is less than a threshold T is marked with n for neutral.
- This process yields five regions.

#### (e) Hypothesis Test

 If regions R<sub>ai</sub> and R<sub>bo</sub> combined outweigh regions R<sub>bi</sub> and R<sub>ao</sub>, it is shown that more plaque accumulated on the inner curvature:

$$r = \frac{\|R_{ai} + R_{bo}\|}{\|R_{ai} + R_{ao} + R_{bi} + R_{bo}\|}$$

 $r \ge 0.5$  implies  $\|R_{ai} + R_{bo}\| \ge \|R_{ao} + R_{bi}\|$ .



Figure 6: Results from the vessel shown in Figure 1

### Results

- 39 in-vivo pullbacks acquired in 37 segments.
- ullet 12 different curvature thresholds T were applied.
- Bifurcations and strong calcifications excluded.
- r≥0.5 for ≥6 out of 12 T-values in 29 segments.
- r≥0.5 for none of 12 T-values in 6 segments.
- Average r increases with threshold T, indicating the relationship increases with curvature:



Figure 7: Dependence of r on T

#### **Conclusions**

- 3-D fusion methodology based on x-ray angiography and IVUS can be used to quantitatively analyze circumferential plaque distribution and local vessel curvature.
- In the majority of vessels, plaque tends to accumulate on the inner curvature rather than on the outer curvature.
- In vessels with non-trivial geometry or which are located in lower branching levels, the resulting complex flow and plaque-accumulation patterns require more detailed CFD analyses.

## Contact

Andreas Wahle, Ph.D., The University of Iowa:

Fax: (319) 335-6028

Web: http://www.engineering.uiowa.edu/~awahle/