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ABSTRACT
Criteria for determining an optimum locality of a manipulator arm is developed.  Often times

in a manufacturing environment, the tools, fixtures, and targets that a manipulator has to deal
with cannot be relocated.  Thus, the choice of the manipulator locality is important.  The method
presented in this paper uses the notion of a service sphere to determine required orientability at
an operating point.  The boundary surfaces to the wrist-accessible output set is determined and
positioned such that the service sphere is inside the wrist-accessible output set.

To determine boundary surfaces of the wrist-accessible output set, manipulator singularities
(internal, boundary, and higher order) are computed and substituted into the constraint equation
to parametrize singular surfaces.  Part of these surfaces may lie internal to the boundary while
other parts are a subset of the boundary.   Singular surfaces are then intersected to determine
second-order singularities.  Second-order singularities partition surfaces into subsurfaces.
Those subsurfaces on the boundary are determined by perturbing a point on the surface and
concluding whether the perturbed point satisfies the constraint equations.  The boundary to the
wrist-accessible output set is then located with respect to the service sphere.  The locality of the
manipulator is determined for maximum orientability.

1  PROBLEM STATEMENT
Given an operating point at which a manipulator is required to have most orientability, it is

necessary to locate (place) the manipulator such that maximum orientability is achieved.
Optimized locality in this paper is defined as a subset of the position and orientation of a
manipulator that provides maximum orientability with respect to an operating point.  This is
achieved by developing criteria for the location of the  manipulator base.

A general method used to automatically determine the placement of manipulators to optimize
multiple “kinematic performance” was presented by Zeghloul and Pamanes-Garcia (1).  In this
method, the task to be accomplished by the manipulator is specified by defining the Cartesian
position of the end-effector for a certain number of path points.  An optimization criteria is
assigned to each point.  A search for the placement optimizing all criteria is carried out.  Another
method is to locate assembly tasks in the manipulator workspace in order to optimize the
maniputability index (2).

In manufacturing environments, the problem can be addressed by using rules of thumb, trial
and error, or by locating the target “deep” inside the workspace. Determination of manipulator
workspace has been addressed by many investigators in recent years.  The term service sphere (3)

Abdel-Malek, K., (1996), "Criteria for the Locality of a Manipulator Arm with Respect to an Operating Point,"
IMEChE Journal of Engineering Manufacture, Vol. 210 (1), pp. 385-394.



2

provides an indication of manipulator performance.  A study on the relationship between the
kinematic geometry and manipulator performance including workspace was presented by Roth
(4).  A numerical approach to this problem was formulated and solved via tracing boundary
surfaces of a workspace (5).  The accessible regions of planar manipulator (6) and the effect of
hand size on workspace were also analytically studied (7).

Recently, numerical criteria to find the accessible output set (8) of a general multi-degree-of-
freedom (DOF) system via analysis of its Jacobian were presented (9).  The algorithm computes
tangent vectors at bifurcation points of continuation curves that define the boundary of
manipulator workspaces.  A cross-section of the workspace is performed and boundary
continuation curves are traced.  The method, demonstrated for closed-loop mechanisms, is
problematic at higher-level bifurcation points such as wrist-singularities. The original
computational method was presented by Wang and Wu (10).   This analysis using continuation
curves at bifurcation points was used to study the workspace of the Stewart platform (11).

The dexterous workspace of a manipulator as defined by Kumar and Waldron (1981) is a
subspace of the accessible output set within which a vector on the end-effector may assume all
orientations. The dexterous workspace was theoretically defined for a special case of
manipulators with wrists having a full range of orientations (12, 13).  Other methods of evaluating
functionality of manipulators indicating a measure of dexterity at a target was presented (14).
Numerical criteria for mapping dexterous charts depicting all possible orientations at a target was
addressed (15).  Other manipulator dexterity studies are presented by Qiu, Luh, and Haug (11),
Gosselin and Angeles (17), and Emiris (18) . Studies of workspace and dexterity of parallel
manipulators are reported by Agrawal (20) and Gosselin and Angeles (17).

The method presented is demonstrated for a six DOF manipulator.  Joints treated in this paper
are either prismatic or revolute with generalized coordinates q = ∈[ , , ]q q q RT

1 2 3
3 , which are

used to characterize the configuration (position and orientation) of each link in the manipulator.
It is noted that a solution to determining an optimized locality is not unique.  To illustrate this,

Fig. 1 depicts an operating point consisting of a dieset used for the manufacturing of miniature
components.  The dieset is constrained in terms of location since it has to be inside a press (not
shown).  The manipulator is required to pick-and-place a variety of components into the dieset
with different configurations.  Thus, orientability at the dieset is critical.  Figures 1a and 1b show
two of many valid solutions.
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Fig.  1 (a) Manipulator base at locality 1 and
(b) manipulator base at locality 2

2 GENERAL PROCEDURE
The general procedure for determining an optimized locality consists of four steps.

(1) Locate a triad at the operating point q and establish a reference frame.  Establish a service
sphere with center at the operating point q such that service regions are defined on the surface
of the sphere (Fig. 2).  A service region is an area on the surface through which the end-
effector may penetrate.  The service sphere is used to indicate dexterity.  The surface of the
service sphere is parametrized as x ss u v( , )  centered at an operating point q.  The service
sphere can assume any radius less than the length of the last link of the manipulator.  The
terms “service sphere” and “service angle” were first introduced by Vinagradov (3).

service 
sphere

x
y

z

operating
point  q

service
region

end-effector axis

Fig.  2  A service sphere depicting a service region
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(2) Partition the manipulator into two segments--one that locates the wrist point w, and another
that controls the orientation of the wrist.  The kinematics of positioning of the wrist point  are
readily available by use of the Denavit-Hartenberg representation (D-H) (21). The D-H
representation provides a systematic method for describing the relationship between adjacent
links.  The 4 4×  transformation matrix describing a transformation from link (i-1) to link i for
a revolute joint is

i
i

i i i i i i i

i i i i i i

i i i

a

a

d
− =

−
−



















1 1

0

0 0 0 1

T

cos cos sin sin sin cos

sin cos cos sin cos sin

sin cos

θ α θ α θ θ
θ α θ α θ θ

α α
(1)

where θ i  (depicted in Fig. 3a) is the joint angle from x i−1  to the x i  axis; di  is the distance
from the origin of the (i-1)th coordinate frame to the intersection of the zi −1   axis with the x i ;
ai  is the offset distance from the intersection of the zi −1  axis with the x i  axis; and α i  is the
offset angle from the zi −1  axis to the zi  axis.
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Fig.  3  (a) D-H representation,  (b) Notation used in obtaining the wrist-accessible output set
The homogeneous transformation matrix 0 Ti  that specifies the configuration of the ith

frame with respect to the base coordinate system is the product of successive transformation
matrices of i

i
−1 T , such that

0 0
1

1
2

1 1

1

T T T T Ti
i

i
j

j
j

i

= =− −

=
∏... (2)

where i is the number of degrees-of-freedom and i
i

−1 T  is of the form

i
i

i
i

i
i−

− −

=










1
1 1

000 1
T

R p
(3)

where i
i

−1R  is the rotation matrix between frame i-1 and frame i and i
i

−1p  is the position
vector from the origin of the i-1 frame to the ith frame.  Thus, a six-axis manipulator with a
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spherical wrist may be partitioned using the homogeneous transformation matrix relating the
end-effector and the wrist to the reference frame such that

0
6

0
3

3
6T T T= (4)

The vector o
qx  describes the wrist-accessible output set of the wrist point such that

0 0
3

3 0
3x R x pq w= + (5)

where 3x w  is the vector describing the wrist point resolved in the reference frame of link 3
(Fig. 3b).  In order to determine the boundary of the wrist-accessible output set for a
mechanism, it has been shown that singularities (both internal and boundary) can be computed
by proper manipulation of the Jacobian of the mechanism (22).  In this paper, first- and
second-order singularities are computed.   First-order singularities are substituted into the
constraint equation to parametrize singular surfaces.  Second-order singularities are
subsequently computed and used to determine subsurfaces of the singular surfaces.
Subsurfaces that are on the boundary of the wrist-accessible output set are identified. The set
is then located with respect to the service sphere such that the sphere is totally inside the set.
By doing so, it is evident that the manipulator will be able to have maximum orientability at
the operating point.

For a given configuration of the manipulator, the generalized coordinates satisfy
independent holonomic kinematic constraint equations of the form

Φ( )q x R x p= − − =0 0
3

3 0
3 0q w (6)

where Φ:R Rn l→  is a smooth function and l is the number of constraint equations.  In
addition, the generalized coordinates q are subject to inequality constraints representing joint
limits. 

q q q1 1 1
min max≤ ≤ (7a)

q q q2 2 2
min max≤ ≤ (7b)

q q q3 3 3
min max≤ ≤ (7c)

(3) Analytically determine a boundary to the wrist-accessible output set for the wrist point w. The
constraint Jacobian of the constraint function Φ( )q  of equation (6) for a certain configuration

q0  is the 3 3×  matrix

( )Φ
Φ

q
i

jq
( )q q0 0=













∂
∂

(8)

The wrist-accessible output set is thus

{ }A Rq
n= ∈ =0 x q 0 q: ( ) ,    for some  Φ (9)

The boundary of the wrist-accessible output set for a manipulator is a subset of the accessible
output set at which the sub-Jacobian Φq  of the kinematic constraint function of equation (6)

is row-rank deficient (23), i.e.,

{ }∂A Ao
q q⊂ ∈ <x q q: ( ) Rank ,  for some  Φ l (10)

For a three DOF mechanism (wrist-accessible output set), equating the determinant of the
Jacobian to zero will result in the first-order singularities of the system.  It is important to
realize that some of these singularities will not satisfy the inequality constraints of the joint
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variables q.  To impose the inequality constraints, it is convenient to parametrize equation (7)
by introducing new generalized coordinates λ i  such that an inequality constraint of the form

q q qi i i
m in m ax≤ ≤ (11)

 can be parametrized as
q a bi i i i= + sin λ (12)

where ( )a q qi i i= +max min 2  and ( )b q qi i i= −max min 2  are the mid point and half range of the

inequality constraint.   The Jacobian, with respect to the new coordinates, can be written as

Φ
Φ

Φλ λ
∂
∂

∂
λ

= =i

j

j

j
qq d

q
q (13)

First-order singularities are determined by equating the determinant of the Jacobian to zero
such that

F x q( ) = =Φq λ 0 (14)

Solving F x( )  and substituting the results into equation (12), a set of first-order singularities
µ i (i=1,...,m) is generated, where m is the total number of singularities.  First-order
singularities generated by equation (14) are of two types: (1) internal singularities are those
due to the assembly of the mechanism itself (2) boundary singularities are due to inequality
constraints imposed on joints (e.g., space limitation, interference, and actuator capability).

Equation (14) is used to find the boundary of the wrist-accessible output set in closed
form.  Substituting each singularity into the wrist-accessible output set equation (5), a set of
surfaces Χ ι

ι(µ )  are parametrized such that

[ ]Χ i m
m( ιµ µ µ µ) ( ), ( ),..., ( )= x x x1

1
2

2  (15)

where i = 1,...m.  In determining accessible output sets, surfaces generated by singularities
may intersect each other.  Parts of a surface may be internal while other parts may be on the
boundary of the wrist-accessible output set.   Intersecting curves between surfaces determine
a different type of singularity, which divide the surface into a number of subsurfaces.  The set
of generalized coordinates resulting from this intersection are called second-order
singularities (the so-called bifurcation points on a cutting plane of the accessible output set).
Pairs of surfaces are intersected such that

x xi
i

j
j( ) ( )µ µ− = 0    for i j≠ (16)

Equation (16) may be carried out numerically.  Continuation methods are used to
compute the intersection curve (24).  Equation (16) will result in a number of second-order
singularities.  The number of singularities is augmented to µ i , i m m n= +1 1,..., , ,..., , where
(n-m) is the number of surface intersections resulting in new singularities.  The matrix of
subsurfaces is augmented to

[ ]Ψ Ψ Ψ Ψ Ψ Ψi m
m

m
m

n
n( ιµ µ µ µ µ µ) ( ), ( ),..., ( ), ( ),..., ( )= +

1
1

2
2 1  (17)

Equation (17) includes all subsurfaces due to internal, boundary, and second-order
singularities.  It remains to be determined whether these subsurfaces are internal or boundary
surfaces.  This can be performed by perturbing a known point on the subsurface and
determining whether this point satisfies the equation of constraint (equation 6), subject to
inequality constraints of equation (7).  For a subsurface Ψ i ( )q , there are at least two
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independent tangent vectors at the point qo   
∂
∂
Ψ i

q1

 and 
∂
∂
Ψ i

q2

.  The unit normal to the surface

at a known point, where q1  and q2  are generalized coordinates (25), is given as

$ ( )n qo

i i

i i

q q

q q

=
×









×

∂
∂

∂
∂

∂
∂

∂
∂

Ψ Ψ

Ψ Ψ
1 2

1 2

(18)

For a small perturbation ∂ε  about the point qo  on the subsurface Ψ i ( )q along the normal

$ ( )n qo , the coordinates of the perturbed point are

x q n q= ±Ψ i o o( ) $ ( )∂ε (19)
For the perturbed point to exist inside the accessible output set, it has to satisfy equation (5),
subject to inequality constraints of equation (7).   Equating equation (5) to equation (19), a
solution is sought to the following system of equations:

0
3

3 0
3R x p q n q 0w

i o o+ − =Ψ ( ) $ ( )m ∂ε (20)

q q q1 1 1
min max≤ ≤ (21a)

q q q2 2 2
min max≤ ≤ (21b)

q q q3 3 3
min max≤ ≤ (21c)

The subsurface Ψ i ( )q is an internal surface if and only if there exists a solution for equation
(20) for both  perturbations ±∂ε ,  consistent with the inequalities of equation (21).

(4) Locate the wrist-accessible output set with respect to the service sphere such that the sphere
is entirely inside the set.  In step (4), the boundary of the wrist-accessible output set was
generated (the boundary envelops the wrist workspace).  This volume of space contains all
accessible points by the wrist.  On the other hand, the surface of a service sphere as defined by
Vinagradov (3), located at an operating point q, has all possible locations of the wrist points.
That is, requiring the radius to equal that of the end-effector mandates that the service sphere
must fall inside the wrist-accessible output set (i.e., the inside the boundary of the wrist-
accessible output set).

3 EXAMPLE: A SIX-AXIS MANIPULATOR
Figure 4 depicts a six-DOF manipulator having three intersecting axes at w (called the wrist

point).  The wrist may be modeled as a spherical joint with center at w (26).
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Fig.  4 A six-axis manipulator
To illustrate the foregoing analysis, partition the manipulator into two segments.  The first

segment of the manipulator comprises one prismatic and two revolute joints (Fig. 5a).  The
second segment is a spherical wrist (i.e., the end-effector may sweep a spherical surface centered
at w)

a2 W

W

z2

z1

z3
x2

x3

z0

x0
x1

(a) (b)

spherical
surface

h

Fig.  5  (a) Three joints of a manipulator,  (b) A spherical wrist (three intersecting axes)
It is required to determine an optimum locality for this manipulator with respect to an

operating point q in its workspace. A sphere is set at q having radius h.  For this manipulator, the
three homogeneous transformation matrices (joints 1, 2, and 3) are

0
1

1

1 0 0 0

0 1 0 0

0 0 1

0 0 0 1

T =



















q
(22a)

1
2

2 2

2 2 2 2

0 0

0

0 1 0 0

0 0 0 1

T =
−

−



















cos sin

sin cos sin

q q

q q a q
(22b)
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2
3

3 3

3 3

0 0

0 0

0 1 0 0

0 0 0 1

T =

−

−



















cos sin

sin cos

q q

q q
(22c)

where q q q1 2 3, ,  and  are the generalized variables representing joint angles.  Multiplying

i
i

i

T −
=

∏ 1
1

3

, and extracting the rotation matrix (equation 3), we get

0
3

2 3 2 2 3

2 3 2 2 3

3 30

R =
− −

−
















cos cos sin cos sin

sin cos cos sin sin

sin cos

q q q q q

q q q q q

q q

(23)

The position vector is

[ ]0
3 2 2 2 2 1p = a q a q q

T
cos sin (24)

For a wrist point located at [ ]3 0 0xw w

T
d= , where dw   is the distance along the z-axis of the

wrist point with respect to reference frame 3, the equation of constraint of the wrist point is

Φ( )

cos cos cos

sin cos sin

sin

q 0=
− −
− −

− −

















=
x d q q a q

y d q q q a

z d q q

w

w

w

2 3 2 2

2 3 2 2

3 1

(25)

For the remainder of this discussion let a2 10=  and dw = 5 .  This manipulator has joint
constraints as follows

0 20 10 101 1 2 1 1≤ ≤ ⇒ + = +q c c   q =  1 sin sinλ λ (26)

0 270
3

4

3

42 1 2 2 2≤ ≤ ⇒ = + = +q b bo       q 2 sin sinλ π π λ (27)

− ≤ ≤ ⇒ + = +60 120
6 23 1 2 3 3

o oq d d    q =   3 sin sinλ π π λ (28)

where the generalized coordinates λ i  were introduced according to equation (12). Evaluating the
Jacobian of equation (14), we get

Φλ

λ λ λ λ λ
λ λ λ λ λ

λ
=

− + + − +
+ + − +









0

0

0

1 2 2 2 2 1 2 3 2 1 2 2 2 2

1 2 2 2 2 1 2 3 2 1 2 2 2 2

2 1

sin( sin cos cos( sin ) sin( sin ) cos

cos( sin cos cos( sin ) cos( sin ) cos

cos

b b b d d d a b b b

b b b d d d a b b b

c

w

w

− + +
+ +

+









cos( sin ) sin( sin ) cos

sin( sin ) sin( sin ) cos

cos( sin ) cos

b b d d d d

b b d d d d

d d d d

w

w

w

1 2 2 1 2 3 2 3

1 2 2 1 2 3 2 3

1 2 3 2 3

λ λ λ
λ λ λ

λ λ
(29)

Internal and boundary singularities are computed by evaluating the determinant of the Jacobian
and equating to zero

( )Φλ λ λ λ λ λ= + + + =c d d d d b d d d aw w2 1 1 2 3 2 3 2 2 1 2 3 2 0cos sin( sin ) cos cos cos( sin )

.........(30)
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subject to constraint equations (26, 27, and 28). Singularities are determined by analyzing

equation (30) as follows.  The first term of equation (30), cosλ 1 0= , indicates that λ π π
1 2 2

= −, .

Substituting λ 1  into equation (26) results in two singularities q1 0 20= ,  . For the term
sin( sin )d d1 2 3 0+ =λ , indicates that sin( )q3 0= , i.e., two singularities q3 0= ,   π . For  the term

cosλ 3 0= ,  λ π π
3 2 2

= −, ,  i.e., two additional singularities q o o
3 60 120= − ,   . For  the term

cosλ 2 0= λ π π
2 2 2

= −, , i.e., two singularities q o
2 0 270= ,   .  Finally, for  the term

cos( sin )d d d aw1 2 3 2 0+ + =λ  ,  cosq
a

dw
3

2= −   will exist if and only if  a dw2 < .

Note that only singularities that are consistent with the constraints are taken.  The singularity
( q3 = π ) is not consistent with the constraints (does not satisfy equation (28)) thus it is not
considered.  The total number of singularities is seven.  Surfaces are parametrized by substituting
each singularity into equation (25).  For example, the torus x2  due to singularity q1 20=  is
readily determined.

x2
1

2 3 2

2 3 2

3

20

20

( )

cos [ cos ]

sin [ cos ]

sin

q

q d q a

q d q a

d q

w

w

w

= =
+
+

+

















, 0 2702≤ ≤q o   ,   − ≤ ≤60 1203
o oq (31)

Similarly, a singular surface is parametrized for each first-order singularity such that

x1
3

2 2

2 2

1

120

05

05

0866

( )

cos .

cos .

.

q

q d a

q d a

d q

o
w

w

w

= =
− +
− +

+

�

!
   

"

$
###

0 201≤ ≤q " , and 0 2702≤ ≤q o   (32)

x3
3

2 2

2 2

1

0( )

cos

cosq

q d a

q d a

q

w

w= =
+
+

�

!
   

"

$
###

0 201≤ ≤q " , and 0 2702≤ ≤q o   (33)

x4
3

2 2

2 2

1

60

05

05

0866

( )

cos [ . ]

sin [ . ]

.

q

q d a

q d a

d q

w

w

w

= − =
+
+

− +

















where, 0 201≤ ≤q " , and 0 2702≤ ≤q o   (34)

For surface x5 , the parametrized surface is

x5
1

2 3 2

2 3 2

3

0( )

cos [cos ]

sin [cos ]

sin

q

q q d a

q q d a

q d

w

w

w

= =
+
+

















0 2702≤ ≤q o   , − ≤ ≤60 1203
o oq (35)

x6
2

3 2

3 1

0 0( )

cos

sin

q

d q a

d q q

w

w

= =
+

+

�

!
   

"

$
###

0 201≤ ≤q " , and − ≤ ≤60 1203
o oq (36)
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x7
2 3 2

3 1

270

0

( ) cos

sin

q d q a

d q q

o
w

w

= = − +
+

�

!
   

"

$
###

0 201≤ ≤q " , and − ≤ ≤60 1203
o oq (37)

Fig.  6a depicts each singular surface generated by the set of singularities.  The union of these
surfaces envelops the accessible set also shown in Fig 6a.  Figure 6b is a cross section of the
surfaces.

x4

x1

x5

x3

x2

x1(q3=120)

x4(q3=-60)

2dwsin 60

x2(q1=20)

x3(q3=0)

x5(q1=0)

(a)

cylindrical surface
cylindrical surface

Torus

Torus

cylindrical surface

x6, x7

(b)

x6

x7

Fig.  6 (a) A section of the wrist-accessible output set
(b) A cross section of the wrist-accessible output set

Note that surfaces x6
2 0( )q =  and x7

2 270( )q o=  are planar surfaces.  To illustrate the
intersection of surfaces to determine second-order singularities, consider the intersection between
the cylindrical surface x4

3 60( )q o= −  and the torus x5
1 0( )q = .  The intersection curve between

the two surfaces can be computed by solving the equation
x x 04 5− = (38)

carrying out the algebra,
cos .q3 05= (39)

In most cases, however, numerical solutions of equation (38) need be carried out.  The resulting
points are then parametrized and the second-order singularity is computed.  For q o

3 60= − , and

q1 0= , the curve c1  is a circle with coordinates parametrized as

c1
2 2

2 2

0 5

0 5

0

=
+
+

















( . ) cos

( . ) sin

d a q

d a q
w

w where 0 2702≤ ≤q o   (40)

Similarly, the second curve c2  where q o
3 60= , and q d w

o
1 2 60= sin , the curve is a circle

parametrized as
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c2
2 2

2 2

05

05

2 60

=
+
+

















( . ) cos

( . ) sin

sin

d a q

d a q

d

w

w

w
o

where 0 2702≤ ≤q o   (41)

The first set ( q o
3 60= − , and q1 0= ) are singularities similar to those resulting from equation

(27).  The set ( q o
3 60= , and q d w

o
1 2 60= sin ) is a second-order singularity set that has the effect

of subdividing the surfaces into subsurfaces Ψ i .  Figure 7 depicts x4  as having two subsurfaces:
Ψ 3  (shown dotted) and Ψ 4 (shown solid).  This means that x4  is segmented to subsurface Ψ 3

on the interval [ ]q d w1 2 60 20∈ sin , and subsurface Ψ 4  on the interval [ ]q dw1 0 2 60∈ sin .

Ψ1

x2

Ψ2

Ψ3

Ψ4

Ψ5

Ψ6

Ψ7

Ψ9

Ψ8

�
� x5

�

x4

x1

x3

Fig.  7  A cross-section of  subsurfaces of the wrist-accessible output set

Similarly, x2  has two subsurfaces: Ψ 2  on the interval [ ]q3 60 0∈ − , and Ψ1  on the interval

[ ]q3 0 120∈  .  Surface x5  has three subsurfaces: Ψ 5  on the interval [ ]q3 60 120∈ ,  Ψ 6  on

the interval [ ]q3 0 60∈ , and Ψ 7  on the interval [ ]q3 60 0∈ − , while the remainder of the

surfaces are not subdivided (e.g., Ψ 8 3= x , Ψ 9 1= x ). Using this method of intersecting surfaces
to find second-order singularities, the seven surfaces are divided into 11 subsurfaces (the cross
section is depicted in Fig. 7).

To determine whether each subsurface is a boundary or internal subsurface to the wrist-
accessible output set, the perturbation method (equation 20) is performed.  For example, consider
a point on Ψ1  in the mid range of its interval such that

( ) ( )q q qo o
2 2 2 2 0 270 2 135= + = + =max min , ( ) ( )q q qo o

3 3 3 2 0 120 2 60= + = + =max min , and the

third component is the singularity at q o
1 20= .  Thus, the point on the subsurface is

[ ]qo T= 20 135 60 .  To determine the unit normal to Ψ1 , we first compute two independent

tangent vectors such that
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and the normal can be evaluated

n =
+
+
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q q d q d a
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2 3
2 2
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2 3
2 2
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3 3
2

3 2

(44)

then the unit normal  $n n n=  can be computed at qo  (on the surface Ψ1 )

[ ]$ ( ) . . .n qo T= −0 354 0 354 0866 .  Using equation (20), the subsurface Ψ1  is an internal surface

if and only if both perturbations ( . )∂ε = ±01 of qo  have solutions of the augmented matrix of
equation (20) and equation (21).  That is

cos (cos ) ( ) $

sin (cos ) ( ) $

sin ( ) $

sin

sin

sin

q q d a n

q q d a n

q d q n

q

q

q

w x
o

x

w y
o

y

w z
o

z

2 3 2
1

2 3 2
1

3 1
1

1 1

2 2

3 3

10 10
3

4

3

4

6 2

+ − −
+ − −

+ − −
− −

− −

− −





























=

Ψ
Ψ

Ψ

q

q

q

0

∂ε
∂ε

∂ε
λ

π π λ
π π λ

(45)

For ∂ε = −01. , there exists a solution to equation (45) such that   [ ]q = 19 98 135 60 06. .
T

.

While for ∂ε = +01.  no solution can be found.  Thus, Ψ1  is a boundary surface of the wrist-
accessible output set and is shown in Fig. 8a.
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(a) (b)

Ψ1

Ψ8

Ψ7

Ψ4

Ψ5

Ψ9

Fig.  8 (a) Boundary subsurfaces of the wrist-accessible output set
(b) The wrist-accessible output set

For subsurface Ψ 2 , the point on the mid-range of the inequality constraints is

[ ]qo T= −20 135 30 . The normal to this surface at qo  is [ ]$ ( ) . . .n qo T= − −0 612 0 612 0 5  and,

for ( ∂ε = +01. ), there exists a solution to equation (45) such that [ ]q = 19 98 135 60 06. .
T

.

Thus subsurface Ψ 2  is an internal subsurface.  With knowledge of subsurfaces, the boundary of
the wrist-accessible output set is determined (depicted in Fig. 8b).

The method described above was used to determine the accessible output set for a number of
manipulator configurations.  Figures 9a and 9b depict accessible output sets for two
combinations of revolute (R) and prismatic (P) joints.

(a) (b)

Fig.  9  Wrist-accessible output set (a) RRR,  (b) RPR

Finally, the wrist-accessible output set is located with respect to the reference frame at q such
that the sphere is inside the wrist-accessible output set.  This ensures maximum orientability at the
operating point q.   Figure 10 depicts the locality of the manipulator. This step is performed
interactively on the computer screen.  The location (position vector v) and orientation (vectors n,
s, and a) are determined.  In the case of the manipulator that is analyzed throughout this paper, a
suitable orientation of the base of the manipulator is then given by the rotation matrix
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R n s a= =
−

−
�

!
   

"

$
###

0 1 0

0 0 1

1 0 0

(46)

and the position vector v = 0 10 15.
T

.

x

y

z

service
sphere
reference
frame

v

manipulator
base

n

s

a

Fig.  10  Determining the locality
The locality chosen by R and v above indicate that the manipulator base should located at a lower
horizontal plane than that of the operating point q to obtain maximum orientability as illustrated in
Fig. 11a.

s

a

y

x

y

x
z

a s

nv

(a)

v

service
sphere

q

Fig.  11  (a) Locality of a manipulator determine by the presented method
However, if the manipulator was located on the same horizontal plane as that of the operating
point, Fig. 11b illustrates that a significantly less orientability would be obtained.
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a s
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y
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x

s

a

v

(b)

v

service
sphere

q

Fig. 11 (b) Locality of a manipulator  at a minimum orientability

4  CONCLUSIONS
The analytical formulation for determining an optimal locality of a manipulator with respect to

an operating point, originally contemplated by Abdelmalek (27), is shown to be a direct extension
of a formulation derived to determine the wrist-accessible output set of a manipulator.  Analytical
and computational implementation of the formulation presented indicates that it is possible to
determine a subspace of the dexterous workspace where the manipulator will have maximum
orientability.  The formulation presented in this paper is valid for planar as well as spatial
manipulators.  If the manipulator has more than four DOF, then this formulation requires that the
manipulator has a spherical wrist.  The method is currently being extended to  manipulators
including a general form of wrist.
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