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Abstract

Design and analysis of a multi-fingered hand prosthesis is presented. The hand has multi-actuated fin-
gers, four with two joints and the thumb with three joints. Each joint is designed using a novel flexible
mechanism based on the loading of a compression spring in both transverse and axial directions and using
cable-conduit systems. The rotational motion is transformed to tendon-like behavior, which enables the
location of the actuators far from the arm (e.g., on a belt around the waist). The forward kinematics of the
mechanism is presented. It is shown that the solution of the transverse deflection of each finger segment is
obtained in a general form through a Haringx model followed by an element stiffness model. A prototype
finger is experimentally tested, results verified, and the hand prosthesis is built. This new design, while
presents a low cost alternative, enables the actuation and control of a multi-fingered hand with relatively
high degrees of freedom.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The design of body-powered upper-limb prostheses in particular has experienced few, if any,
major breakthroughs since the early 1960s (see a review by Fletcher [9]; an article by Godden [10];
a book by Klopsteg and Wilson [17]; and a review by Lunteren et al. [25]). Persons with
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amputation frequently express dissatisfaction with the current state of upper-limb prosthesis
technology [8,11,13,14,20,21,27] noting numerous deficiencies with their prostheses. Yet contin-
ued advances in materials science will undoubtedly yield significantly improved functionality
and far better esthetics.

Upper-limb prostheses are either hook or hand-shaped, and are actuated by body or external
power. In the United States, approximately 70% of users wear hooks. Outside the United States,
especially in developing countries, there is a greater preference for hand-shaped prostheses.
Compared to hooks, prosthetic hands generally offer less function and durability at greater weight
and cost. Nonetheless, many individuals still choose hands over hooks, primarily for cosmetic
reasons [7].

The development of an upper-limb prosthesis that can be felt as a part of the body by the
amputee is far to become reality. In fact, current commercial prosthesis hands are unable to
provide enough grasping functionality. One of the main problems of the current available devices
is the lack of the degrees of freedom (DOFs).

Some examples of research on multi-fingered hands can be found in the work of Hanafusa and
Asadas [12], Okada [30] and Skinner [36]. The Okada hand was a three-fingered cable-driven hand
which accomplished tasks such as attaching a nut to a bolt. Hanafusa and Asadas hand has three
elastic fingers driven by a single motor with three claws for stably grasping several oddly shaped
objects. Later multi-fingered hands include the Salisbury Hand (Stanford/JPL hand) [26], the
Utah/MIT hand [15], the NYU hand [6] and the research hand Styx [28]. The Salisbury hand is a
three-fingered hand; each finger has three degrees of freedom and the joints are all cable driven by
electric motors. The placement of the fingers consist of one finger (the thumb) opposing the other
two. The Utah/MIT hand has four fingers (three fingers and a thumb), in a very anthropomorphic
configuration; each finger has four degrees of freedom and the hand is cable driven by pneumatic
pistons. The NYU hand is a non-anthropomorphic planar hand with four fingers moving in a
plane, driven by stepper motors. Styx was a two fingered hand with each finger having two joints,
all direct driven. Like the NYU hand, Styx was used as a test bed for performing control
experiments on multi-fingered hands.

Commercially available prosthesis devices, such as Otto Bock SenecorHand'“, as well as
multifunctional hand designs [1,2,4,7,21,35], are far from providing the manipulation capabilities
of the human hand [5]. This is due to many different reasons. For example, in prosthetic hands
active bending is restricted to two or three joints, which are actuated by a single motor drive
acting simultaneously on the metacarpo-phalangeal (MCP) joints of the thumb, of the index and
of the middle finger, while other joints can bend only passively.

Over the past 20 years the myoelectrically controlled hand prosthesis for children, first intro-
duced by researchers from Sweden and the Netherlands [3,18,19,24,32,33] has become one of the
standard prosthetic devices for children with a unilateral below elbow defect. This type of
prosthesis is very well accepted because of its appearance and the absence of a control harness
despite stated disadvantages: heavy, slow operating speed, vulnerable and its size prohibits fitting
to children with a long forearm stump. Recent advances include specific factors related to vol-
untary pinching [13,14,34], underarticulation [22], multifunctionality of a hand [37] and forces at
the fingertips [29]. Some active and passive prosthetic hands are shown in Fig. 1.

The aim of this paper is to introduce the IOWA hand, to illustrate the unique mechanism used
to actuate each joint, and to present the analysis used in controlling the hand. In the recent
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)
Fig. 1. (a) Otto Bock electrohand. (b) Becker Imperial hand. (c) PMR modular electric. (d) APRL hand.

research [38] we developed one closed form solution, however, it is unstable in some cases and
this paper presents a more efficient model (Haringx model) in two dimensional analysis and
introduces another solution in three dimensional model (element stiffness model).

2. The IOWA hand

The IOWA hand prosthesis was designed and built at the University of Iowa using a novel
approach to the design of multi-segmental joints with the objective to actuate each finger using a
cable-conduit system. Each segment of a finger is actuated by a cable-conduit system routed
through two or three mechanical springs that act as both the structure and the moving elements
(joints) of the hand. Each flexible element will translate and rotate (flex) while actuated by a single
cable-conduit mechanism, that transfers the linear force into lateral and axial deflection. This
configuration is similar to that of the flexor tendons in the human hand.

The IOWA hand is composed of five active fingers, each capable of bending at the metacarpo-
phalangeal (MCP), proximal interphalangeal (PIP) and distal interphalangeal (DIP) joints. These
joints offer low-friction bending while resisting lateral deflection. With three joints in each finger
(Fig. 2), this design represents a significant change from current prosthetic hands that bend at only
two MCP joints and at no PIP or DIP joints.

Indeed, most current prosthetic hands only bend at the metacarpo-phalangeal joint in each of
the first two fingers. The remaining two fingers are typically passive. Finger flexion, therefore,
does not accurately mimic the movement of the human hand. Past designs using multiple pha-
langes and joints within each finger to improve finger movement have proven disappointing.

Each finger comprises a number of springs, compression links, cables and conduits. Each spring
acts as a joint. Affecting a tension force on a cable through the conduit will yield a deformation in
the spring, both in transverse and in compression. Compression links act as a connecting holder
for the cable and as a restrainer for the conduit as the spring is flexed within. The IOWA hand
(Figs. 3 and 4) exhibits significantly lighter weight; with the correct choice of materials, the
completed hand prosthesis would weigh at 90 g. This is approximately half of the endoskeletal [7]
prosthesis (203 g) and one fourth of the Otto Bock (390 g) and APRL (421 g) hands (shown in
Fig. 1) where current hooks made by Hosmer Dorrance including the aluminum model 5XA and
stainless steel model 5X weigh 113 and 213 g, respectively.
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Fig. 3. (a) The IOWA hand—no glove. (b) Hand with cosmetic glove Model 8056 from Linea Orthopedics, AB.
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Fig. 2. A schematic of the principles governing the Iowa hand.

2.1. Advantages and disadvantages of the IOWA hand

The simplistic design of the IOWA hand yields a number of significant benefits to the user. We
shall enumerate these benefits in view of preliminary testing. More rigorous testing will be con-

ducted over a period of two years.
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Fig. 4. Prototype of the IOWA prosthesis.

(a) Actuators can be mounted elsewhere on the body (not on the arm): The cable-conduit system
(similar to that used in the brake system of a bicycle), allows for remote actuation of the
spring element. As a result, the actuators are located elsewhere, typically on a belt around
the waist.

(b) Adjustable grasps and dexterity: The modular design of the hand allows for various angles on
each finger and at each joint. Human anatomy allows for grasping complex geometry using
intricate coordinated control of the five fingers. To avoid such a control scheme, it was
deemed preferable to allow for a variable adjustable angle at the base of each compression
link as shown in Fig. 5.

(c) Realistic finger movement: Given the adjustable compliance of the hand and given unique de-
sign parameters consistent with the user’s anthropometric measures, the hand will perform
with great fidelity (Fig. 6). While our preliminary testing has shown a significant improvement
over other such mechanisms, design of several hands to match several patients will be accom-
plished and tested over the next few years.

(d) Inherently compliant: As a human hand is not rigid, but allows for great flexibility when in the
relaxed condition, and some flexibility in the tight condition, the IOWA hand provides ade-
quate compliance. Stiffness/compliance characteristics are adjustable to fit the user’s prefer-
ence and will be addressed in greater detail in the following section.

(e) Force transmission ratio is high which allows pinch force at the fingertips: The cable-conduit sys-
tem provides good transmission ratio between the actuator and the hand. Pinch force at the
fingertips is achieved, however, fine control over motion between two fingers is difficult to
attain and requires practice.
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Compression link #3

Fig. 6. IOWA hand prosthesis (grasping one object).

(0 Good cosmetic characteristics: With a commercial cosmetic glove, the IOWA hand exhibits
acceptable esthetics. The first and only hand designed by this group matches the size of an
adult male. Many other considerations must be addressed if a hand is to be designed for a
female or a child, in particular, the strength to weight ratio, actuator forces, compliance
and weight.

(g) Joint independent actuation: Flexing of each spring element is independently controlled. This
allows the user to manipulate each segment, but also allows the control system to introduce
coupling between the PIP and DIP as is the case in a normal hand.
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3. Analysis of the IOWA hand

In order to consider the spring behaving like an elastic rod, its rigidity in bending is written as

B Ed'L
do/du 32nD(1+ L)

Ky = (la)
where B is the moment, and d¢/du is bending rotation angle for the element length du, E and G
are the material elastic normal and tangential modula, respectively, z is the number of active coils,
d is the wire diameter, D is the mean spring diameters, L is the length of the loaded spring and ¢
is the bending rotation angle.

Rigidity in shear is defined as

S Ed'L
s = — = lb
¢ 8nD? (16)
where S is the shear load, and ¢ is the shear angle.
Rigidity in compression as
v Gd*
= —— = — 1
3, 8nD’ (1¢)
where V is the axial load, d, is the axial displacement.
Rigidity in coupling as
Ed*
sb = 1
™ 64nD (1d)

3.1. Haringx element method

The basic concept is the division of the spring into small elements consisting of ordinary, linear
springs. The unloaded length of the element / (Fig. 7) is Aly, the internal forces for the two end
nodes are shear forces 7;,_; and T;, axial forces V;_; and V;, moments M;_ ; and M,;. Utilizing

(a) (b)

Fig. 7. The Haringx model of the helical spring: (a) center line of the loaded spring and (b) element /.
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equilibrium as presented by Lindkvist [23] the distance Ax; and Ay;, and rotation, Ag, are obtained
between the two end nodes (i) and (i — 1) as

V.
A)Cl- = AZO + Kil (28.)
M; Ky, + Ti1Ks;
Ap, = — ’ 2b
e (K — AxiKp i) Ky + Kszb_,,' (20)
Ti1 + ApKsp.i
Ay; = L DO (2¢)
Ky,

where Ky;, K, Ko, and K; are the rigidities of bending, shear, coupling and compression for
element / respectively. The total displacement from the upper end to end (i) is now obtained by

Xi =Xi_1 + Ax;_1cos @, — Ayi_1sin @, (3a)

Vi = Vi1 + Ay cos @, + Axiy sin g, (3b)

¢ = ¢y +Ap; (3¢)
The load to the next element is

Vi =V cos@;+ Tsin ¢, (4a)

T; = T cos ¢; — V'sin ¢, (4b)

M; =M + Ty, — Vi, (4c)

and the deflection of the next element can be calculated using Eq. (4) and repeating this procedure
for all elements up to the final element one obtains the deformation of the fixed end with respect to
the free end.

Fig. 8 shows the relationship between three coordinate systems. Therefore after we obtain x, y
and ¢, the deformation of the fixed end with respect to the free end the relations between the three
systems are

=15 0) s

Fig. 8. The relationship of three coordinate systems.
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{XZ}: COS(%-(/)) —sin(g—qa) {xl} (Sb)
» sin (2—¢) cos(Z—¢) |

where [x y]" is the position vector of point O in system x — y, [x; ] is the position vector of
free end in system x; — y1, [x2 7 ]T is the position vector of free end in system x, — y», ¢ is the

rotation angle of fixed end in system x — y, and ¢, is the free end rotation angle in system x, — ;.
From Eq. (5) one can obtain

U = et a0 ®
and

Py =@ (7)

The final deflection in the x,0), system is

dsz—xSiﬂ(%—qo) —ysin(g—go) (8a)
dy:ysin<g—(p> —ycos(g—q)) (8b)
Py =¢ (8¢)

Because we also need the stiffness matrix, a transformation matrix from one coordinate system to
another must be developed. In Fig. 9 consider the spring with the generalized coordinates
q=[x y ¢]"andload Q=[V T M]". Apply the small changes in the load +8Q and use
the Haringx method to calculate q(Q + Q) and q(Q — 5Q), then

1
oq =5 [q(Q +8Q) — q(Q — 3Q)] 9)
Q+5Q
Q Q+5Q
q+5q
q
(a) (b) ©
- grod \Q‘+5Q'

Fig. 9. Deformation transformation: (a) spring with generalized coordinates and load, (b) loaded at the upper end and
deformation at the lower end, (c) deformation at the upper end and with the lower end fixed and the load at both ends.
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We perform three different and linearly independent changes to obtain

6V1 6V2 8V3 i SX] 8)62 8)(?3
6T] 5T2 6T3 =S 8)/1 Syz 6y3 (10)
BMI 8M2 6M3 _8(/)1 6(p2 6(03 _

From Eq. (10) we can solve for S as

- 11

8V1 6V2 6V3 5}(1 8)62 6)63

8M1 6M2 6M3 _6(p1 8(02 8@3 i
3Q = S"3¢ (12)
5Q = S'sd’ (13)
where
S11 821 831
S = S12 §22 832

Sy —spX —si3— 1T sy —spx—sn+V 8§31y — 853X — 8533

x and y are the distance between the two ends, S’ is the stiffness matrix for Haringx model.
Egs. (8) present a simple deflection model of the planar motion of each segment. In order to
enable the calculation of spatial deflection, we further develop an element stiffness model.

3.2. Element stiffness model

The linear load—deformation relationship for a small element of the helical spring will first be
established. There are two coordinate systems, global system denoted by abc and local system
denoted by xyz. The a-axis is along the center line of the undeformed element. The x-axis is along
the center line of the wire. The y-axis is perpendicular to the a-axis as shown in Fig. 10. The
external load is F = [F, F, E]T and M = [M, M, Mc]T at the bottom center point of the
top knuckle. The pitch angle is defined by # = arctan(-%5).

For one element in Fig. 10 the rotational angle ¢ with respect to the a-axis changes from ¢,
to ¢,. The internal forces and moments at the local coordinate system x)z are obtained using
the following transformations:

(a) translating the action of the force along the global a-axis;
(b) rotating it to the direction of the local y-axis;

(c) translating it along the local y-axis;

(d) rotating it the pitch angle about the local y-axis.

Therefore the internal forces and moments can now be expressed as the multiplication of the
associated transformation matrices as follows:

QX}Z = RnUyR¢UllQabc (14>
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Fig. 10. The spring element and the coordinate systems.

where Q. =[F. F, F. M, M, M.]',Qu.=[F F F M, M,
matrix is defined as follows:

[ cosy 0 sinp 0 0 0 1 00

0 1 0 0 0 0 0 1 0

R — —siny 0 cospy 0 0 0 U — 0 0 1
e 0 0 0 cosy 0 sinp|> Y[ 0 02
0 0 0 0 1 0 0 0 0

| 0 0 0 —sinp 0 cosn| -2 0 0

565

M, ]T, and where each

SO~ O OO

O = O O OO

—_o O O oo
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[0 sing cos¢p O 0 0 7
0 —cos¢ sing 0 0 0
0 0 1 0 0 0
R, = :
0 0 0 0 sin¢g cos¢
0 0 0 0 —cos¢ sing
| 0 0 0 0 0 I
1 0 0 0 0 0]
0 1 0 0 0O
0 0 1 0 0O
Ua= 1o 0 0 100
0 0 Dr=d) tany 0 1 0
0 — 299 any 0 00 1]

The elastic energy of the curved beam between angles ¢, and ¢, is defined by Lindkvist [23]

2
2M;
U:/¢2 <Fx+1+<tann>2) LR oM oM B MY D
¢

— d 15
. 2EA 2kGA  2EJ  2GK 2kGA 2EI | 2cosy ¢ (15)
where
2

4 2 2 3 —L— 4
gy LidN (e and K= |14 (5t |

8 2\ D D 16(1— d ) 32

D(1+(tann)?)

F.=F.-cosn-cos¢ + F,-sinn+ Fy -cosn - sin ¢ (16a)
F,=—F,-cos¢ + F,.-sin¢ (16b)
E=F,-cosn—F,-cos¢-siny—F,-siny-sin¢ (16¢)

D . .
MxzzFa-cosn+MC-cosn-cos¢+Ma-s1n;1—|—M,,-cos11-sm¢

D . D . .
—i—Fb(—E(q’)z—qﬁ)‘cosqb-smn—zsmn-smq'))
D . . D .
—i—E(E(qu—gz'))~smq5-sm11—zsm11-cos¢)> (16d)
) D

My:—Mb-cos¢+MC~51n¢—§E(¢2—¢)-cos¢-tann

D .

— (¢~ ¢)-sing - tany (16¢)

2
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D : . . : D :
MZ:Macosn——F;-smn—Mccoqu-smn—Mbmnn-smd)—i-Fb(——cosn-smq')

2 2
—f-g(q’)z — ¢)cos¢ -siny - tann) +FC< —g cosn - COS ¢ —g(qﬁz — ¢)sin¢
-sinn-tann) (16f)
Using the Castigliano theorem the deformation at the end of the element is
5d§:2—2, 5d§=2—27 5df=gg, 6(’)3:;1\2’ 5<pi=§—5b, wizsﬂi

e
abc?

and if we write in matrix form q¢,. = HQ’, , where Hq,¢ is the element stiffness matrix whose
elements are listed in Appendix A.

The element stiffness matrix obtained characterizes the relationship between changes in load at
the free end and changes in displacement of the lower end. The desired relationship is between the
load and displacement at the free end of the spring. Therefore it needs some transformations.
Consider the spring in Fig. 9 with the generalized load Q, + 6Q, at the free end where the preload
is Q; and there is a small increment 6Q;. According to the equilibrium the corresponding load
at the fixed end is Q, + 0Q,. We have 8Q, = S|,8q,, where S;; is the stiffness matrix (Fig. 11).

We also can obtain the relationship between 6Q, and dq, by

0Q, = Ssz&ll (17)
According to equilibrium one can derive
Q; +0Q; = U 5(Q; +8Q,) = (U + 3U)(Q, +6Q,) (18)

Fig. 11. Spring with generalized loads and displacements.
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0 0

or 0

symmetric matrix.
From Eq. (18) expanding the parentheses yields

where 60U, = [ ] , U, 1s the transformation matrix for translation, and or is a 3x3 skew-
6x6

Q, +08Q, = U;Q; + 6U,Q, + U;8Q, + 8U,8Q, (19)
substitute Q, = U,Q, into Eq. (19) yields

0Q, = dU,Q, + U;8Q; + dU,58Q, (20)
Neglecting terms of higher order yields

3Q, = U, ' (8Q, — 8U;Q)) (21)
From Eq. (18) we can obtain

0 0 0 0 0 0 0 0

oUQ: = [Sf O}Ql = [SEFl 0] = _[silr 0} ~ _[f 0}8‘11 (22)
From Egs. (17), (20) and (21)

5Q; = U, ' S},8q, + o0 dq, (23)

F, 0
Therefore
_ 0 0
Sll :Ur1<SFIFZ+ |:ﬁ1 0:|> (24)

where S;; is the stiffness matrix.

The deflection obtained above characterizes the displacement of the fixed end with respect to the
free end resolved in the x;y,z; system. Therefore, it is now necessary to transform it to the coor-
dinate system xyz in Fig. 12(a). Indeed, the system x,y,z, is a local coordinate system at the free end
of the spring; the system x,y,z is another local coordinate system, which locates at the fixed end,
coincides with the origin O of the global coordinate system xyz and has the same orientation of the
system x,y,z;. The vector r = [x y z|" is defined in xyz system. Angles o, f§ and 7 from the
element stiffness model are the deflection angles (Euler’s angles) at the fixed end in x;y,z; system.

From x,y,z; to xX2y,2»

2 » 2l =-x » =zl (25)
The relationship between the two coordinate system X,y,z, and Xyz can be defined by
oy, = Ry, (26)
where
cos ffcosy —cos ffsiny sin f§
R = | cosasiny +sinasin fcosy cosacosy —sinasin ffsiny — sinocos f§ (27)

sinasiny — cosasin fcosy sinacosy + cosasinffsiny  cosocos ff
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Fig. 12. Coordinate systems: (a) the relationship of three systems and (b) xyz and X,y,z,.

Assume the unit vector X, = [cos4; cos/l, cos s ]T and the relationship is shown in Fig. 12(b).
Therefore, we have the following equations from Fig. 12(b)

(cos A1) + (cos Ay)* + (cos /3)” = 1 (28a)
cos A3 = tan 0 cos 4, (28b)
z
tan = 5 (28¢)
i =a (28d)
The position vector of the free end can be represented in xyz by
{x} { —x1 oS fcOsy — X3 8in B + x, cos fsiny }
y p = X3 €0s fisin o — x;(cosysinasin ff + cosasiny) — x,(cos «cosy — sin asin f3sin y)
z —x3cos fcosa — xj(—cosocos ysin ff + sinosiny) — x,(sin o« cosy + cos asin ffsin y)
(29)
The final deflection of the free end with respect to the fixed end is defined by
Ax=L—x (30a)
where Ax is the deflection in x direction.
Ay=y (30b)
where Ay is the deflection in x direction.
Az =z (30c)

where Az is the deflection in z direction.
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The three rotation angles are derived as

M= (30d)
2
J2 = Arc cos( M) (30e)
1+(z/y)
A3 = Arccos <E cos }~2> (30f)
Y

Egs. (30) characterize the resulting motion after applying a force through the cable-conduit to
move the upper compression link.

4. Implementation

In this section, we implement the deformation equations where mechanical properties of the
spring element are shown in Table 1. Applying the Haringx model the results are in Tables 2
and 3.

From Table 3 one can find that the numerical solutions are matching the experiment one
closely.

To run the element stiffness model one can obtain the numerical results and compare them with
experiment results in Tables 4-7 as follows, where each table shows that it has different external
load in the cable-conduit. The results through numerical and experiment methods are almost the
same.

Table 1

The mechanical properties
Wire diameter d =0.0023 m
Mean spring diameter D =0.034 m
Number of active coils n=2~6
Length of the spring L =0.036 m
Pitch of the spring h=0.09549 m
Modulus of elasticity E =210 GPa
Stiffness of the compression K = Gd*/8nD?
Modulus of rigidity G =80 Gpa

Table 2

The transform in different coordinate systems (Haringx model)

Original coordinate sys. X10) SYs.

x (cm) y (cm) Agp (deg)  x; (cm) » (cm) Ag (deg)

V=-5N,T=0,M=0.08Nm 3.1562 0.3508 11.6366 3.1621 0.2931 11.6366
V=-8N,T=0,M=0.136 Nm  2.8765 0.5236 17.9118 2.8981 0.3865 17.9118
V=—-10N,T=0,M=0.17 Nm  2.6878 0.625 21.864 2.7272 0.4209 21.864

V=—-15N,T=0,M=0.255Nm 22166 0.8379 31.1207 2.3306 0.4283 31.1207




Table 3

The final deflection at the free end
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Calcul. results

Exper. results

Ax, (cm) Ay, (cm) A (deg) Ax, (em) Ay (em)  Ag (deg)

V=-5N,T=0,M=0.085 Nm 0.4379 0.2931 11.6366 0.4268 0.2692 11.587
V=—-8N,T=0,M=0.136 Nm 0.7019 0.3865 179118 0.712 0.3903 17.912
V=—10N,T=0,M=0.17 Nm 0.8728 0.4209 21.864 0.8549 0.4158 21.768
V=—I5N,T=0,M=0255Nm 1.2694 0.4283 31.1207 1.2567 0.433 31.25

Table 4

Fx=-6,Fy=0, Fz=0, Mx =0, My = —0.051, Mz = 0.051
x; (mm) »1 (mm) z; (mm) o (deg) B (deg) 7 (deg)
-30.7436 2.0649 2.3252 0.6053 6.7361 -6.9521
x (mm) y (mm) z (mm) A1 (deg) 4y (deg) /3 (deg)
30.828 1.65422 1.31876 0.6053 89.5267 89.6227
Ax(mm) Ay (mm) Az (mm) Ay (deg) Ay (deg) Al; (deg)
5.172 1.65422 1.31876 0.6053 89.5267 89.6227
Experiment results
5.100 1.580 1.3213 - - -

Table 5

Fx=-9,F=0,Fz=0, Mx =0, My = —0.102, Mz = 0.051
x; (mm) »1 (mm) z; (mm) o (deg) B (deg) 7 (deg)
-27.9778 1.935 4.2132 1.0137 12.9897 —-6.8182
x (mm) y (mm) z (mm) A1 (deg) 4y (deg) /3 (deg)
28.2401 1.35299 2.21735 1.0137 89.472 89.1347
Ax (mm) Ay (mm) Az (mm) Ay (deg) Ay (deg) Al (deg)
7.7599 1.35299 2.21735 1.0137 89.472 89.1347
Experiment results
7.7599 1.32 2.18 - - -

Table 6

Fx=—-12, Fy=0, Fz=0, Mx =0, My = —0.051, Mz = 0.153
x; (mm) » (mm) z; (mm) o (deg) B (deg) 7 (deg)
—25.2412 5.4005 2.2603 1.3743 5.8173 —-19.3334
x (mm) y (mm) z (mm) A1 (deg) A (deg) Ay (deg)
25.7042 3.23927 0.439209 1.3743 88.6382 89.8154
dx (mm) dy (mm) dz (mm) Ay (deg) A, (deg) AJ; (deg)
10.2958 3.23927 0.439209 1.3743 88.6382 89.8154
Experiment results
10.11 3.25 0.4423 - - -
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Table 7

Fx=-17, Fy=0, Fz=0, Mx =0, My = —0.204, Mz = 0.085
x; (mm) yi (mm) z) (mm) o (deg) B (deg) 7 (deg)
—20.5881 2.7134 6.9985 2.5115 23.6845 —-10.8644
x (mm) y (mm) z (mm) /1 (deg) /2 (deg) /3 (deg)
21.7962 1.11069 1.97626 2.5115 88.7698 87.8108
Ax (mm) Ay (mm) Az (mm) Ay (deg) A, (deg) A3 (deg)
14.2038 1.11069 1.97626 2.5115 88.7698 87.8108

Experiment results
14.13 1.045 1.899 - - _

Fig. 13. Experiment setup for a finger of the IOWA hand.

5. Experiment

A mechanism is set up to test the flexing/load relationship for each mechanical spring (Fig. 13).
It includes several parts: a pulley, weight block, a frame fixing the base of finger springs. The loads
are supplied by different weights through wires in every knuckle. In our experiment we used five
different weights: 1, 5, 10, 15 and 20 N. The results are shown in Tables 2-7.

The method of loading the compression spring used in this design induces a lateral deflection
with a relative translation and rotation of the upper compression link. Recall that the lower
compression link is considered fixed because the motions of the different segments of the finger are
independent. This particular aspect of the mechanical spring is what has enabled us to develop
a finger-like action, yet maintain the compliant aspect of the hand.

6. Conclusion

The design and analysis of a novel multi-fingered hand has been introduced. It was shown
that flexion of a compression spring is implemented as a complex joint in each segmental link of
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a finger. Five fingers are actuated, each with 3 DOFs. It was shown that loading of a com-
pression spring in both transverse and axial directions and using cable-conduit systems allows
for controllable manipulation of the IOWA hand, yet maintains inherent compliance in each
finger, a properly that is important to grasping and manipulation. It was shown that the
translational motion of the wire through the cable-conduit is transformed into a lateral
deflection with a relative translation and rotation of the finger segment. Indeed, this design
allows for the location of the actuators far from the hand. It is shown that a Haringx model is
used to calculate the solution of the transverse deflection of each finger segment in a general
form and an element stiffness model is used to calculate the three dimensional deflection
characteristics. Numerical results obtained. The performance of each finger is tested experi-
mentally and compared with the numerical results. Results show that the proposed formulations
for predicting planar and spatial deflections using numerical algorithm closely matches exper-
imental results. It is evident that the cost of manufacturing for such a device is relatively low
compared with commercial actuated prosthetics.
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