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This paper proposes an extension of edge detectors based on 
second-order differential operators to the case of multiple band 
(color) images. To this end, we deline a local directional measure 
of multispectral contrast. A definition of edge point is then given, 
as the location of a directional maximum of the contrast function. 
Extremal contrast edges are defined, as loci of zero crossing points 
of the first directional derivative of the contrast function. The 
qualitative properties of the so defined edges are brieffy discussed. 
An algorithm for edge location with subpixel resolution is 
proposed, with an example of application to actual RGB imag- 
ery. CC 1991 Academic Press, Inc. 

1. INTRODUCTION 

Edge detection methods based upon differential opera- 
tors are widely used in the early processing of one-band 
images, also referred to as gray-level, intensity, or mono- 
chromatic images, in contrast with multi-band, color, 
multispectral images. In particular, methods based on the 
analysis of zero-crossings of some second-order differen- 
tial operator applied to image data have been extensively 
explored in recent years. 

The two most popular operators are the Laplacian [3, 
18,20,23,27] and the second directional derivative in the 
direction of the gradient [5,7, 11, 15,271; these operators 
share the nice property of being invariant with respect to 
translations and rotations in the image plane. Of the two, 
the second directional derivative is the more appealing, 
due to its connection with the extrema of the gradient 
magnitude; indeed, the loci of maximal gray-level gradi- 
ent are a natural definition of edges in intensity images. 

In contrast, differential methods seem to have received 
little attention in the case of multiband images. There 
have been attempts to define local operators for detecting 
changes in color images (see, e.g., [9, 13, 21, 251); how- 
ever, most of the literature on the early processing of 
color imagery treats the segmentation problem from the 
dual point of view, i . e . , that of determining homogeneous 
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regions in the image, edges being then defined as region 
boundaries. The algorithms proposed to this purpose 
range from modifications of gray-level segmentation 
methods, such as histogram thresholding [22, 261 or split- 
and-merge [l], to various kinds of clustering procedures 
[6, 14, 24, 281. 

The inherent difficulty in extending differential meth- 
ods to multi-band images stems from the fact that in this 
case the image function is vector-valued. To quote Ma- 
chuca and Phillips [ 191, after the gradients of the image 
components are computed, “there remains the problem 
of how to combine them into one output.” 

The aim of this work is to answer that question in a 
way that leads to a meaningful extension of the above 
mentioned second-order methods. To this end, we define 
a local measure of directional contrast based on the gradi- 
ents of the image components. This measure is maximal, 
at each image point, in a particular direction, which in the 
monochromatic case is the direction of the gray-level gra- 
dient; this leads to the definition of edge point as the 
location of a directional maximum of the contrast func- 
tion. It should be noted that this measure of contrast was 
already proposed in 191; that paper, however, did not 
explore the consequences of such definition in connec- 
tion with edge localization. 

A natural extension of second-order methods is then 
given, by defining extremal edges as loci of transversal 
zero crossings of the first derivative of the contrast func- 
tion in the direction of maximal contrast. It is shown that 
this definition presents some nontrivial problems, con- 
nected to the sign ambiguity in the definition of the direc- 
tion of maximal contrast. Conditions under which this 
ambiguity can be removed are given, and we discuss the 
qualitative properties of the resulting zero-crossing con- 
tours. 

Finally, we propose an algorithm that uses the above 
theory for the determination of extremal edges with sub- 
pixel resolution. An example of application to actual 
color imagery is also given. 
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2. EDGE DETECTION IN A MULTISPECTRAL IMAGE 

Let an m-band image be represented by the functionf: 
R2 + R” that maps a point P = (xi, x2) in the image plane 
to an m-vector f = tfdxl, x2),f2(~1, ~21, . . . ,.MxI, x2)). 

This definition clearly includes monochromatic images as 
a particular case (m = 1). 

A note on notation: we shall use the notation xi, i = 1, 
2, for the image plane coordinates in formulas involving 
summations, and the more usual notation (x, y) else- 
where, it being understood that xi = x and x2 = y. Also, x 
or y as a low index will denote differentiation with re- 
spect to that variable, e.g., g, = aglax. 

We shall suppose that the components off have been 
smoothed by Gaussian filtering. The strong regularizing 
property of Gaussian filters ensures the existence and 
continuity of the derivatives ofJ(x, y) of any order (see, 
e.g., 1271). This condition could be relaxed; indeed, the 
results of this section will hold good provided that the 
image function is at least of class C2, i.e., twice continu- 
ously differentiable. 

The image value at a given pixel location is therefore a 
vector in R”. Since we are seeking for variations in the 
image, we shall consider the difference in the image val- 
ues at two nearby points, say P and Q, which is the m- 
vector 

W’, Q> = f(Q) - f(P). 

When Q - P is an infinitesimal displacement dP = (dxl, 
dxz) the above difference becomes the differential 

df = i df dxi. 
;=[ 8Xi 

The squared norm of df is 

(1) 

df2 = $ $, $ . g dXidXk = 2 $, YikdXidXk, (2) I 

where the dot indicates inner product of vectors in R”. 
Note that speaking of “inner product” of vectors implies 
that some kind of metric has been defined on Rm [17]. 
This is clearly an important issue, since the choice of a 
particular metric may be expected to affect the output of 
the edge detector more or less heavily, depending upon 
the nature of the image being analyzed (e.g., natural color 
image, false-color aerial image, etc.). 

A detailed discussion of this topic is, however, beyond 
the scope of this paper, and the reader is referred to [4, 
121 for examples of metrics applicable to the case of natu- 
ral color images. Although we shall use the Euclidean 
metric in the examples, the main results will hold good 

for any nonsingular Riemannian metric. In the case of the 
Euclidean metric, the yik are given by 

Now, for constant displacement size lldPf/, df2 indi- 
cates how much the image value varies in the direction of 
dP. Therefore, given a unit vector n = (ni, nz) in the (xi, 
x2) plane, we define the squared local contrast off at P in 
direction n as 

S(P, n) = 2 i yiknink = En: + 2Fnln2 + Gnz, (3) 
i=l k=l 

where we have introduced the usual shorthand notation 
for the components of yik, borrowed from differential ge- 
ometry of surfaces [16]: 

~11 = E, ~12 = ~21 = F, ~22 = G. 

It is well known that a quadratic form as (3) has, for 
varying n, a maximum and a minimum value. These ex- 
treme values coincide with the eigenvalues of the 2 x 2 
matrix [y&l, and are attained when n is the corresponding 
eigenvector. By elementary calculations, one finds such 
extreme values to be 

A, = (E + G t V/(E - G)2 + 4F2)/2 (4) 

and the corresponding eigenvectors are given by 

n += (cos f%, sin 0,) (5) 

1 2F 
0, = 5 arctan E _ G + kv 

& = 0, + ?r/2. 

The above analysis shows that the quantity defined by 
(3) has, at each point, two extremal values attained in 
orthogonal directions. The meaning of this can be clari- 
fied by considering the monochromatic case (m = 1). In 
this case, letting Z(x, y) = fi(x, y) be the gray value func- 
tion, we have 

E = Z:, F=Z,Z,, G=Z; 

and one easily finds 

h+=z;+z;, A- =o (6) 

8, = i arctan * ZY 
x Y 

+ krr = arctan T + kn. 
x 
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Therefore, in the mono case, the maximal squared con- 
trast is the square of the gray-level gradient magnitude. 
The direction of maximal contrast is the gradient direc- 
tion and the minimal contrast of zero is attained ortho- 
gonally to the gradient. This agrees well with the usual 
definition of contrast in one-band images as the magni- 
tude of the gray-level gradient [7]. 

The form of Eqs. (4), (5) suggests that an important 
role is played by the two-dimensional vector function 

v = (E - G, 2F). (7) 

Indeed, we have 

A+ - A- = IIvII, 8+ = iarg(v), (8) 

from which it is seen that the maximal direction is defined 
wherever v # 0; at points where v = 0, the two eigen- 
values of [yiJ become equal and the eigenvector direc- 
tions are undefined. Indeed, in this case S(P, n) does not 
depend on n at P; i.e., the image variation has the same 
magnitude in all directions. This fact introduces a source 
of indeterminacy that is peculiar to the multiband case. 
Indeed, for m = I, from (6) we see that v can be zero only 
where the gray-level gradient is zero; for m > I, how- 
ever, the direction of maximal contrast may be undefined 
even if the contrast is nonzero. We shall see in the follow- 
ing that the zeros of v have an important impact on the 
properties of edge lines; for the moment, however, we 
give a preliminary definition of edge point. 

DEFINITION 1. An edge point of a multispectral im- 
age is a point P where h+, as given by (4)) exhibits a local 
directional maximum in the direction n+ given by (5), 
provided that such direction is uniquely defined at P. 

That Definition 1 is a reasonable one can be seen by 
resorting again to the monochromatic case (m = 1). Tak- 
ing into account (6), we see that in this case Definition 1 
reduces to the standard definition of edge point as the 
location of a maximum of the gradient magnitude in the 
direction of gradient. 

An example of application of the above ideas is shown 
in Figs. 1-3. Fig. l(a,b,c) shows the three channels of a 
256 x 256 RGB image. We take as fi the three color 
channels, so m = 3. The maximum contrast h, has been 
computed after each channel is smoothed by a circularly 
symmetric Gaussian with o = 3. This rather high value of 
blurring has been chosen only in order to reduce detail, 
so avoiding dense and hard-to-read graphs of edge con- 
tours without thresholding. Fig. 2(a) shows the values of 
A+, computed using discrete approximations to the re- 
quired derivatives; we used 3 x 3 masks obtained by 
least-squares fitting of a quadric to pixel data as sug- 
gested in [2]. The edge points are shown in Fig. 2(b). The 

algorithm used to find edge points proceeds as follows: 

l compute, at each pixel, the maximal contrast X+ and 
the corresponding direction n+, and discard pixels where 
n+ is undefined, or h+ is below a predefined threshold; 

l at each remaining pixel (x, y), fit a least-squares 
quadric to the values of A+ at (x, y) and its eight neigh- 
bors, and test whether the fitted quadric has a maximum 
on a straight line through (x, y) in the direction n,. The 
pixel is marked as an edge point if this maximum is within 
kO.5 pixels from (x, y). 

Figure 2 shows that all visually detectable edges are 
correctly located by the algorithm, including the face- 
background edge on the left that presents a strong change 
in hue but almost no change in intensity. By comparison, 
Fig. 3 shows the result of applying the algorithm to a 
gray-level version of the same image (Fig. l(d)) obtained 
by taking the arithmetic mean of the three color channels. 
The face-background edge is practically invisible in the 
intensity image and, as could be expected, is no longer 
detected by the algorithm. Also the mirror borders are 
localized much better in the RGB image than in the black- 
and-white version. 

3. CONNECTIONS WITH ZERO-CROSSING METHODS 

A popular second-order differential operator for edge 
detection in intensity images is the second directional 
derivative of the smoothed intensity function, denoted as 
Dz for brevity [27]. Besides being rotationally invariant 
(as the Laplacian), D2 is the most natural choice when 
edges are defined as extrema of the gradient magnitude. 

Indeed, assuming the image to be represented by a 
sufficiently smooth gray level function, a necessary con- 
dition for the gradient magnitude to have a directional 
maximum at a point P is that D,(P) have a transversal 
zero crossing at P; i.e., that D2 be zero at P while having 
different signs when moving away from P in the gradient 
direction and in the opposite one. 

In order to extend such concepts to the multiband 
case, we state the following 

DEFINITION 2. A stationary contrast edge point of a 
multispectral image is a point P where the first directional 
derivative of the maximal squared contrast A+(P) in the 
direction n+(P) of maximal contrast is zero. 

Let us denote by Ds(P) the directional derivative men- 
tioned in Definition 2. Its value is found as the inner 
product of n, with the (x,y) gradient of S, 

Ds(P) = VS(P, n+) . n+ 

= E,n: + (2F, + E,)n$zz 

+ (G, + ZF,)n& + G,n?, (9) 
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FIG. 1. Color image. (a), (b), (c): The R, G, B channels, in that order. (d): The intensity image, I = (R + G + 8)/j. 

where the subscript + has been dropped from the compo- an extremum (maximum or minimum). To ensure extre- 
nents of n+ for simplicity. mality of contrast, we must check whether P is a trans- 

In the derivation of (9) it may seem that we have not versa1 zero crossing; i.e., we must consider the sign of DS 
considered the variation of A+ due to the change in n+. along a curve tangent to n, at P. 
Actually, using the gradient of h+ instead of that of S This task presents some additional difficulties with re- 
yields exactly the same result (see the Appendix). spect to the analogous problem of finding zero crossings 

Now, a zero of Ds(P> ensures that the local directional of D,(P) in the mono case. The problem is that the defini- 
contrast has a stationary point at P, but not necessarily tion of n, as an eigenvector does not uniquely specify its 
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FIG. 2. (a): Maximal contrast of the filtered RGB image, Gaussian filtering with u = 3 (log scale). (b): The detected edge points. 

sign; indeed, the squared contrast defined by (3) is the 
same in a direction n and in the opposite -n. But since DS 
is cubic in n, the choice of sign is not immaterial. That 
this problem is real can be seen by observing that O+ as 
defined by (8) exhibits a jump of kr (corresponding to a 
change of sign in n+) whenever F crosses zero with E - 
G < 0. 

The problem is therefore: how, and under what condi- 

tions, can we orient the vector n+, i.e., choose at any 
point among +n+ and -n+ in a consistent way? 

A sufficient condition is given by 

THEOREM 1. The vector n+ can be uniquely oriented 
in any simply connected region V where v + 0 (provided 
that the image function is at least C3). 

Proof. The (x, y) gradient of 0 as given by (8) is 

FIG. 3. (a): Maximal contrast of the filtered intensity image, Gaussian filtering with u = 3 (log scale). (b): The detected edge points 

b 
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Under the condition 5 E C3, the components of VB are 
continuously differentiable functions of x and y wherever 
v # 0; therefore, from Green’s theorem, the line integral 
of VtJ along any closed curve in V is zero. Given a partic- 
ular point PO in V, we choose a particular orientation of 
n, at P, so defining 8(P0) = &. We can then uniquely 
define 0(P) for all points P in V as 

e(P) = e. + I ve . ds, (11) 
Y 

where y is a curve in V joining PO to P, and from the 
preceding analysis, the result will not depend upon the 
choice of y. H 

The proof obviously fails if V contains some point Q 
where v = 0. In this case, Vf3 is singular at Q, and its line 
integral along a closed curve y surrounding Q may be 
nonzero. From (5), we see that this integral must be an 
integer multiple of 7r; in particular, it may be an odd 
multiple of n, which means that on moving from PO along 
y and returning to PO one finds that n, has reversed its 
sign. This means that Ds must be considered a two- 
valued function on y, and we must make two turns on y 
before achieving the same initial value. 

4. ROTATIONAL PROPERTIES OF v 

Theorem 1 of the previous section shows that the rota- 
tional properties of the vector function v are of para- 
mount importance in the very definition of the contrast 
derivative Ds . Such properties are briefly analyzed in the 
following. We shall consider first a generic two-dimen- 
sional vector function w = (WI, ~2) defined on some sub- 
set of R2, and we shall suppose that w is at least of class 
Cl (i.e., has continuous first derivatives). Some terminol- 
ogy and some results are borrowed from [19]. 

DEFINITION 3. The curvature of w is the vector 
function 

k-y*w, 
llwl12 ’ 

where 

WI = (--w2, Wl>, 

so that the pair w, wI is positively oriented, and 

w = [Z$;; dw*ldx 
dW2/dX: I = [VW, vw21. 

This definition is similar to [19, 1 .B.v]. Note that the 
curvature is defined wherever w is nonzero. Note also 
that, if q = arg(w), i.e., the signed angle between the 
positive x1 axis and w, then 

k = Vq. (13) 

We now consider a smooth, simple closed curve y ori- 
ented counterclockwise and on which w # 0. 

DEFINITION 4 [ 19, 1 .A.vii]. The rotation number of w 
on y is 

THEOREM 2 [19, l.A.viii]. The rotation number q,Jy> 
is an integer. 

The proof is almost trivial; from (13), 27rv,(y) equals 
the variation of arg(w) after a complete turn on y, which 
must be an integer multiple of 27r since w is single-valued. 

DEFINITION 5. If Z is an isolated zero of w, its index 
Z,(Z) is the rotation number of w on a simple closed 
curve y enclosing Z and no other zero of w. 

THEOREM 3. If w f 0 on y, and the region r inside y 
contains only isolated zeros of w, then rt,Jy> equals the 
algebraic sum of the indices of all zeros in r. 

Proof. It suffices to partition I into simple regions, 
each containing only one zero of w, and observe that the 
integral on y equals the algebraic sum of the integrals on 
the boundaries of such regions. 

We now specialize the analysis to the case of v = (E - 
G, 2F) as defined by (7). We first state the following 
properties of v, assuming that the components off are 
entire functions, which is ensured when using two-di- 
mensional Gaussian filtering. 

THEOREM 4. The loci of v = 0 are either 

Zl: isolated points (almost always), or 
22: smooth closed curves, or 
23: smooth curves whose endpoints lie on the image 

boundary. 

Proof. Since v = 0 implies both E - G = 0 and F = 0, 
it is clear that the zeros of v are the intersections of zero- 
crossing lines of vi = E - G and v2 = 2F. Under the 
above assumption, vI and v2 are entire functions, so their 
zero-crossing (ZC) loci are either isolated points or 
smooth curves, either closed or extending to the bound- 
ary of the considered region [27]. We may therefore ex- 
clude u1 or v2 being zero in a finite region unless it is 
zero everywhere. Therefore, we shall almost always be 
in case Zl (intersection of a ZC line of vt with one of v2), 
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while cases 22 and 23 may appear if the two ZC lines 
coincide, or if one of the components of v is identically 
zero. n 

THEOREM 5. Zf Z is an isolated zero of v, and 
det(auil&rk) # 0 at Z, then Z,(Z) = +l. 

A formal proof of Theorem 5 can be found in the Ap- 
pendix. Its importance stems from 

THEOREM 6. Let y be a simple closed curve on which 
v # 0. Then, n+ is uniquely orientable on y iff rt”(y) is 
even. 

Proof. Since arg(n+) = &arg(v>, if n+ is one-valued on 
y then the rotation number of v is twice the rotation num- 
ber of n,. Conversely, suppose that q”(y) = 2k; let y be 
parameterized by an arbitrary parameter t on [0, l] so 
that P(1) = P(0) and P(t) is continuously differentiable. 
We choose an arbitrary determination of e( P(0)) from (5), 
so fixing the sign of n+(P(O)); using (lo), we can now 
define O(t) as 

e(r) = 0(P(O)) + I,’ VB(P(u)) * dP(u) 

so that 

t’(l) = d(O) + ; 2qv(y) = O(O) + 2kr, 

i.e., n+(P(l)) = n+( P(O)), and n+ is then uniquely defined 
ony. H 

Theorems 5 and 6 show that isolated zeros of v have an 
important impact on the very definition of the contrast 
derivative. Their connection with extremal edges will be 
clarified in the next section. 

5. EXTREMAL EDGES 

The analysis developed in the previous sections allows 
us now to state more precisely the definition of an extre- 
ma1 edge. 

DEFINITION 6. An extremal contrast edge point of a 
multispectral image is a point P where the first directional 
derivative of the maximal squared contrast h+ in the di- 
rection n, of maximal contrast has a transversal zero 
crossing. 

The sensibleness of the above definition can now be 
easily stated. Indeed, for P to be an extremal edge point 
we must require that v(P) f 0, since otherwise n+ would 
not be defined. But the components of v are smooth func- 

tions of P, so we can always find a simply connected 
open region V containing P in its interior, and in which v 
f 0 everywhere. From Theorem 1, n+ is uniquely orient- 
able in V, so DS is a single-valued function in V, whose 
sign along a curve tangent to n, at P is a well-defined 
quantity. 

It is therefore meaningful to consider extremal edges 
as the loci of extremal edge points as defined above. We 
have 

THEOREM 7. The extremal edges of a multispectral 
image are either 

El: smooth closed curves (isolated points may be 
viewed as a particular case of closed curves shrunken to 
a single point), or 

M: smooth curve segments whose endpoints either 
ZS21: fall on the boundary of the image, or 
E22: are zeros of v. 

Proof, Assume that we have found all zeros of v in 
the image. Unless v = 0 everywhere, from Theorem 4 we 
may partition the image into a set of simply connected 
regions, such that all zeros are either on the image bound- 
ary, or on the boundary between two (or more) regions. 
The directional derivative can now be uniquely defined 
inside each region V;, and we may find its zero-crossing 
contours. From [27] we may say that the zero-crossing 
contours in Vi are either 

l smooth closed curves contained in Vi (so we are in 
case El), or 

l smooth curve segments ending on the boundary SK 
Of Vi. 

Now, suppose that a ZC contour y in Vi has its endpoints 
at PI and P2 on SVi (see Fig. 4). Considering, e.g., PI, we 
have two cases: 

1. v(P1) = 0; we are in case E22 above; 
2. v(P,) # 0. If PI is not on the image boundary (case 

E21), by the argument used in the explanation of Defini- 

FIG. 4. Zero-crossing contours of the contrast derivative. 
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tion 6, we may build a new region Vl containing Pr and 
points from both Vi and from the adjacent region(s). 
From the above analysis, this implies that the portion of y 
belonging to Vf must be part of some smooth ZC contour 
of Vf that extends beyond PI into some adjacent region 
Vk. This, in turn, implies that PI must be an endpoint of 
some contour y’ of Vk, and that y’ smoothly joins to y 
at PI. 

We can repeat the above arguments on the other end- 
point of y’, and so on, until we eventually arrive either at 
a singular point (case E22), at the image boundary (case 
E21), or at P2 (closed contour, case El). n 

Note that a transversal ZC of Ds(P) does not yet en- 
sure that P is a maximum of contrast. To check whether 
the contrast is maximum or minimum at P, we could test 
the sign of its second derivative, provided that the image 
function is sufficiently smooth (i.e., of class C3). It is, 
however, more convenient to check how the sign of DS 
changes when moving on a curve tangent to n+ at P; a 
change from positive to negative, in the direction of n+, 
indicates a maximum, while the opposite (negative to 
positive) says that P is a minimum. The fact that Ds is 
cubic in n, in this case is of help, since reversing the sign 
of n, reverses both the sign of Ds and the direction of 
travel, and the sequence of signs remains unchanged. 

6. AN ALGORITHM FOR EDGE DETECTION WITH 
SUBPIXBL RESOLUTION 

The analysis developed in the preceding section rules 
out the possibility of finding zero-crossing contours by 
computing Ds(P) at each pixel and then looking for sign 
reversals between adjacent pixels. Indeed, whenever the 
image contains points where v = 0, Ds is not single-val- 
ued and we must explicitly indicate the path on which we 
search for its zero crossings. 

In particular, this path may be the contour of a square 
with vertices at four adjacent pixel locations (see Fig. 5). 
This observation leads to the following algorithm for find- 
ing extremal edges with subpixel resolution. The algo- 
rithm is inspired by the one proposed by [lo] for the 
monochromatic case. For each pixel location (x, y), de- 
fine C(X, y) as the square having vertices at (x, y), (x + 1, 
y), (x + 1, y + l), and (x, y + I), and choose an arbitrary 
direction of travel on X(x, y) as in Fig. 5. The algorithm 
then proceeds along the following lines: 

Al. Compute OS(P) at each pixel, assuming an arbi- 
trary determination of d(P) (i.e., an arbitrary sign of 
n+(p)). 

A2. Try to orient each square X(x, y). To this end, fix 
the sign of n, at (x, y) and the corresponding value of Ds. 
Then, traversing 6C in the chosen direction, check 
whether the angle among n+ at each vertex and n, at the 

.I. 1x * 

T 

FIG. 5. Orienting the vector II, on pixel-square paths and finding 
zero-crossing lines. 

preceding one is less than n/2; if so, proceed, otherwise 
change the sign of n, and of Ds at the considered vertex. 
If, on return to (x, y) we get the same orientation of n, we 
may go on with finding zero crossings; otherwise, we 
mark the square as nonorientable and we do not proceed 
further. 

A3. For each orientable square, Ds has now a well- 
defined value at the corners of C(x, y), so we may pro- 
ceed to examine sign changes. Ruling out, for the sake of 
simplicity, the possibility that Ds is exactly zero on one 
or more of the vertices of C, we have either zero, two, or 
four sign changes of Ds when traversing 6C. If there are 
sign changes, we may locate zero-crossing points on 6C 
by using a bilinear approximation to Ds inside C: 

Ds(x + u, y + u) = (1 - u)(l - u)Ds(x, y) 

+ (1 - u>uDs(x, y + 1) 

+ ~(1 - u)Ds(x + 1, y) 

+ uuDs(x + 1, y + 1) (16) 

with 0 I u I 1, 0 : u 5 1. The bilinear approximation is 
useful since it yields not only the locations of ZC on 6C, 
but also the way to connect them in the case of four ZC 
points, since the zeros of (16) describe an equilateral hy- 
perbola whose orientation may be easily computed from 
the four corner values. In this way, each square C may 
yield up to two “edgels” (edge elements); such edgels 
can then be smoothed out (e.g., by a spline) in order to 
get smooth edge contours. 
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FIG. 6. Extremal edges of the filtered RGB image, drawn to sub- 
pixel resolution. 

Before commenting out the above algorithm, it may be 
useful to look at the result of its application to the previ- 
ously seen RGB image (Fig. 6). In making this figure, we 
have not used splines, since using straight edgels is suffi- 
cient for display purposes. 

The nonorientable squares are marked by drawing their 
contour. Noting that nonorientable squares must contain 
a zero of v, the ZC contours displayed in Fig. 6 agree with 
the theoretical behavior predicted by Theorem 7. Some 
very short contours in the figure seem to violate Theorem 
7, as open curves not ending on a nonorientable square, 
but this is only a matter of graphic resolution; actually, 
they are very “thin” closed curves. 

Figure 7 shows the ZC contours after nonmaximum 
suppression. The test for maximality is performed by 
checking whether Ds is decreasing or increasing when 
crossing the edge1 in the direction of n+. Figure 7 should 
be compared with Fig. 2(b), where edge points were com- 
puted directly as maxima of h+ on the pixel grid. 

Figure 8 offers a closer look at the area around the 
intersection of the face-background, hair-background, 
and hair-face edges on the left of the image. Nonmaximal 
edgels are shown as dotted lines; the figure also displays 
the raw vectors n+ and the corresponding sign of Ds at 
grid points (a small square on the grid point indicates a 
positive value of Ds). 

The test of orientability used in step A2 of the algo- 
rithm can be justified by the fact that, assuming that C 
does not contain zeros of v, the total rotation of n+ along 

FIG. 7. Maximal edges of the filtered RGB image, drawn to subpixel 
resolution. 

6C must be zero. Hence, if the image is sufficiently 
smooth with respect to pixel size, we may expect the 
rotation of n, on each side of C to be small, and in partic- 
ular to be less than 7r/2. A more accurate test would 
require to predict the rotation of n, on each side from the 

FIG. 8. The vector n+ and extremal edges in a small area of the 
image in Fig. 1. 
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value of V8, but this would futher increase the computa- 
tional load. Anyway, the proposed test, together with the 
bilinear approximation (16), ensures at least that for two 
adjacent orientable squares the ZC points (if any) on the 
common side coincide. 

Note also that in step A2 above we said that nonorient- 
able squares were not processed any further; this may 
seem too restrictive, since the non-single-valuedness of 
DS along 6C does not forbid us to find ZC points on 6C, at 
least if the given square is surrounded by orientable 
squares. However, the bilinear approximation (16) is ob- 
viously not applicable to this case, so we do not know 
how to connect ZC points with edgels inside C (note that 
in this case we would have an odd number of ZC points 
on the contour). 

7. CONCLUSIONS 

We have tried to extend the theory of edge detection 
based on second-order differential operators to the multi- 
band case, and our analysis shows that this extension is 
feasible. 

Some results from one-band theory do not extend to 
this case; for example, the zero-crossing lines are no 
longer guaranteed to be closed. Although closedness of 
ZC lines seems to be considered a very useful feature in 
the mono case [27], from the author’s point of view its 
loss is not too serious. When only maximal variations in 
the image are taken into account, edge lines are usually 
not closed even in the monochromatic case; closed edges 
can be obtained only by considering also nonmaximal 
zero crossings (the so called phantom edges [7]), whose 
physical significance is hardly understood. 

On the other hand, the possibility of coding simulta- 
neously the significant changes of the image in both lumi- 
nance and color seems quite promising in view of a sym- 
bolic description of the image. Studies are in progress on 
the problem of labeling edges with quantitative attributes 
(e.g., the values of the gradients of the image components 
at the edge) suitable for a faithful description of the im- 
age, as proposed in [lo, 151. Moreover, subpixel edge 
detection could make this approach useful for dealing 
with image matching problems as those found in stereo 
and motion analysis. 

APPENDIX 

A.l. Proof of Equation (9) 

Let, for simplicity, n + = (u, v), where u = cos 19+ and 
v = sin 19+. The directional derivative of A+ in the direc- 
tion n, is 

= ; E, + G, + 
(E - G)(Ex - G,) + 4FF, 

d(E - G)2 + 4F2 I u 

+ (E - G)(E, - Gy) + 4FF, 
d(E - G)2 + 4F2 1 ‘* 

Taking into account the fact that 

E-G = d(E cos 28, = 2u2 - 1 = 1 - 2v* - G)* + 4F2 

and 

2F 
d(E - G)* + 4F2 

= sin 20+ = 2uv, 

substituting and simplifying, one obtains 

AA+ . n, = i [2EXu3 + (2E, + ~F~AJ 

+ (4F, + 2GX)uv2 + 2Gyv3], 

that is precisely Eq. (9). 

A.2. Proof of Theorem 5 

Before proving Theorem 5, we give the following rule 
for computing the index of an isolated zero of v. 

Let y be a circle of radius p centered on an isolated 
zero 2 of v, and not enclosing any other zero. Then con- 
sider the zeros of the components of v = (vl, v2) on y. 
Note that, due to smoothness, each zero-crossing line of 
vI and v2 must cross y in an even number of points; iso- 
lated zeros lying on y may be considered as limits of 
closed curves, so they must be counted as double zeros. 

Now, label each zero of v1 of odd multiplicity with the 
symbol e, and each zero of v2 of odd multiplicity with the 
symbol f. Starting from a point PO on y such that vl(PO) > 
0 and v2(PO) > 0, build the string s by concatenating the 
labels of zeros in the order in which they appear when 
traversing y counterclockwise. Then simplify the string 
s by deleting pairs of consecutive e’s andf’s until s does 
not contain such pairs any more. After such simplifica- 
tions the string s will be reduced to either 

s = (efef)” or s = (fefe)” 

where n 2 0, and it should be clear that Z,(z) = n in the 
first case, and Z,(Z) = -n in the second. Indeed, by con- 
sidering the sequence of signs of the components of v, 
one may easily convince himself that a sequence efef or 
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FIG. Al. Computing the index of a zero of v. 

fefe corresponds to a full turn of v around the origin, in 
the positive or negative direction, respectively. Note that 
PO may not be found if one of the components of v is 
always nonpositive, but in this case it should be clear that 
I,(Z) = 0 since v makes no turn around the origin. 

We now prove Theorem 5. Let Z be an isolated zero of 
v. Expanding v in a Taylor series around Z, 

q(P) = w:x + &xTH,x + o(11xjj3) 

u2(P) = w:x + BxTHzx + 0(1lx11~>, 

where x = P - Z, wi and w2 are the gradients of u1 and v2, 
respectively, evaluated at Z, and H1, Hz are the corre- 
sponding Hessians (again at Z). Under our hypothesis, 
w1 and w2 are both nonzero and nonparallel; hence, by 
the implicit function theorem, the zero-crossing lines of 
u1 and u2 are two smooth curves through Z, intersecting 
at a nonzero angle as in Fig. Al(a). Therefore, for suffi- 
ciently small p, the zero pattern on y will be either efefor 
fefe, yielding Z,(Z) = -+ 1. n 

Note that if w1 and w2 are parallel, it may happen that 
the situation is as depicted in Fig. Al(b), yielding Z,(Z) = 
0. Also, in the mono case (m = l), it is easily seen that wl 
and w2 are zero, since they are linear in the components 
of the gray level gradient g, which is zero at Z. In this 
case one could consider the quadratic terms in the Taylor 
expansions; this is, however, unnecessary, since we al- 
ready know that in the mono case arg(v) = 2 arg(g) so that 
Z,(Z) must be even. 

A.3. Computation of Zmage Derivatives 

The computation of the maximal squared contrast A+ 
requires the evaluation of the first derivatives of each 
image component; the computation of Ds, in addition, 
requires second derivatives. The problem of differentia- 
tion of digital images has been extensively considered in 
the literature. For the example shown in the paper, the 
required derivatives have been computed by convolving 
each image component fi with a set of 3 x 3 masks that 
result from local fitting of a second degree polynomial to 

the data [2]. The use of a second degree polynomial is 
equivalent to expandingfi(x, y) in a Taylor series around 
the considered pixel, and truncating the series at the sec- 
ond derivative terms: 

f;(x+P,y+q)‘~(x,y)+~p+~q+~~p2 

+ a% 1 a2f;: 
- P2 + 5 3 q2 = a0 + alp axay 

+ a2q + a3p2 + a4pq + a5q2. 

By minimizing, with respect to the ak , the sum of squares 
of the differences between the above expression and the 
actual values offi over a 3 x 3 neighborhood of (x, y ), one 
easily gets estimates of the image derivatives as 

-10 1 
a25 -1 axay 4 [ 00 1 1 *J;., 

10 -1 

where the * denotes discrete convolution. 
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