Course Syllabus

- 1. Color
- 2. Camera models, camera calibration
- 3. Advanced image pre-processing
 - Line detection
 - Corner detection
 - Maximally stable extremal regions
- 4. Mathematical Morphology
 - binary
 - gray-scale
 - skeletonization
 - granulometry
 - morphological segmentation
 - Scale in image processing
- 5. Wavelet theory in image processing
- 6. Image Compression
- 7. Texture
- 8. Image Registration
 - rigid
 - non-rigid
 - RANSAC

- Thinning and thickening often used sequentially
- Let $B = \{B_{(1)}, B_{(2)}, B_{(3)}, \dots, B_{(n)}\}$ denote a sequence of composite structuring
- elements $B_{(i)} = (B_{i_1}, B_{i_2})$
- Sequential thinning sequence of *n* structuring elements

$$X \oslash B = \left(\left(\left(X \oslash B_{(1)} \right) \oslash B_{(1)} \right) \dots \oslash B_{(n)} \right)$$

- several sequences of structuring elements $\{B_{(i)}\}$ are useful in practice
- These sequences are called the Golay alphabet
- composite structuring element expressed by a single matrix
- "one" means that this element belongs to B1 (it is a subset of objects in the
- hit-or-miss transformation)
- "zero" belongs to B2 and is a subset of the background
- * ... element not used in matching process = its value is not significant
- Thinning sequential transformations converge to some image the number of iterations needed depends on the objects in the image and the structuring element used
- if two successive images in the sequence are identical, the thinning (or thickening) is stopped

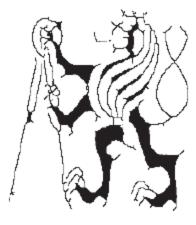
Sequential thinning by structuring element *L*

- thinning by *L* serves as homotopic substitute of the skeleton;
- final thinned image consists only of lines of width one and isolated points
- structuring element *L* from the Golay alphabet is given by

$$L_1 = \begin{bmatrix} 0 & 0 & 0 \\ d & 1 & d \\ 1 & 1 & 1 \end{bmatrix}, \qquad L_1 = \begin{bmatrix} d & 0 & 0 \\ 1 & 1 & 0 \\ d & 1 & d \end{bmatrix}$$

• (The other six elements are given by rotation).

Original



after 5 iteration

final result

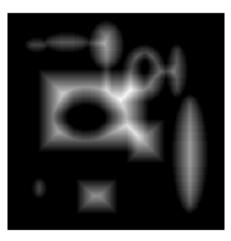
Sequential thinning by structuring element *E*

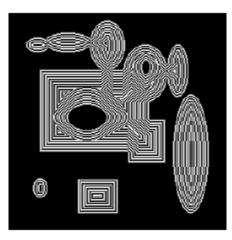
• structuring element E from the Golay alphabet is given by

$$E_1 = \begin{bmatrix} d & 1 & d \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \qquad L_1 = \begin{bmatrix} 0 & d & d \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

• Less jagged skeletons

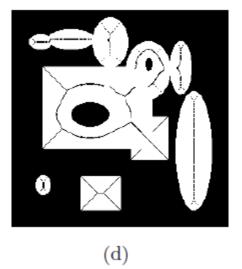


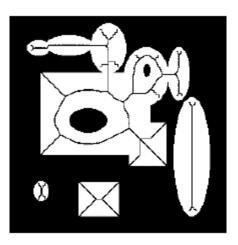




(a)

(b)

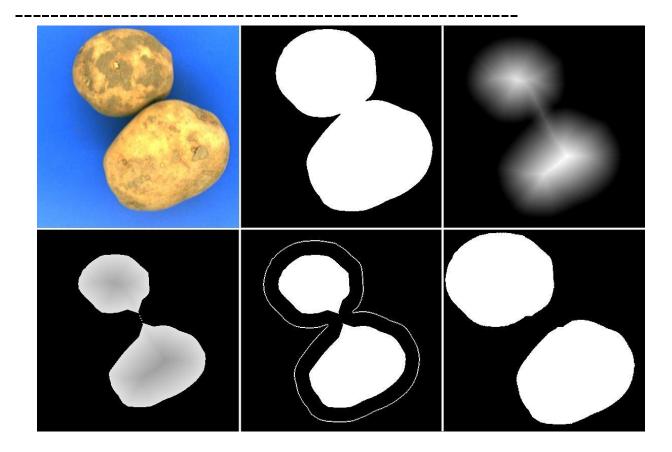




(e)

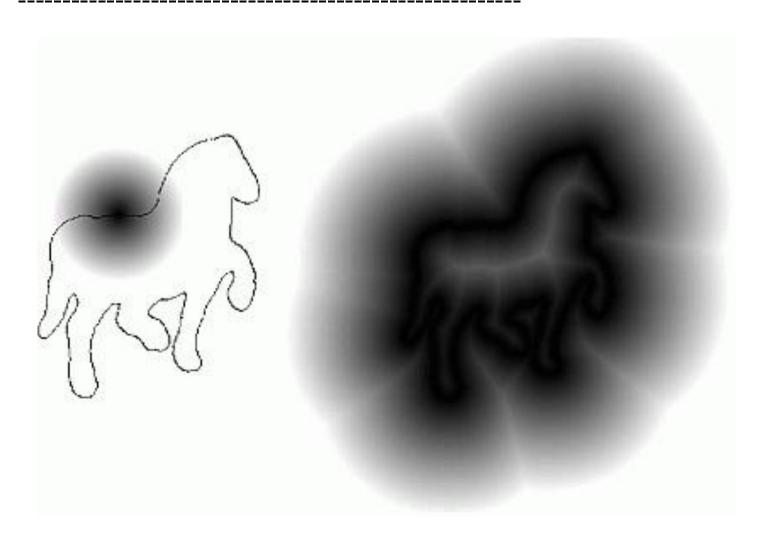
Distance Transform

Binary image: (O, \mathbb{Z}^n) ; *O*: set of object pixels/voxels (points) Distance transform = an images or a function $DT: O \rightarrow \mathbb{Z}^n$ where DT(p) is the distance between *p* and the background \overline{O} Distance transform is a measure of "local depth"



Distance Transform

Another example



Distance Transform

Algorithm

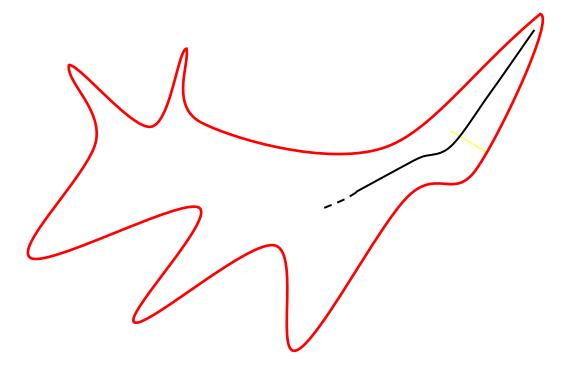
for all object points passign DT(p) = MAX; for all background points passign DT(p) = 0;

for iteration = 1 and 2 scan the image in slice⁺ row⁺ column⁺ direction and for each p do if $DT(p) < \min_{q \in N(p)} DT(q) + dist(p,q)$ assign $DT(p) = \min_{q \in N(p)} DT(q) + dist(p,q)$

scan the image in slice⁻ row⁻ column⁻ direction and for each p do

if
$$DT(p) < \min_{q \in N(p)} DT(q) + dist(p,q)$$

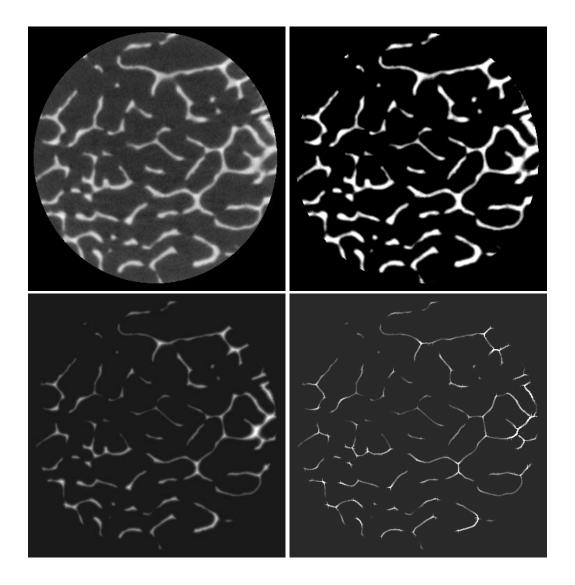
assign $DT(p) = \min_{q \in N(p)} DT(q) + dist(p,q)$

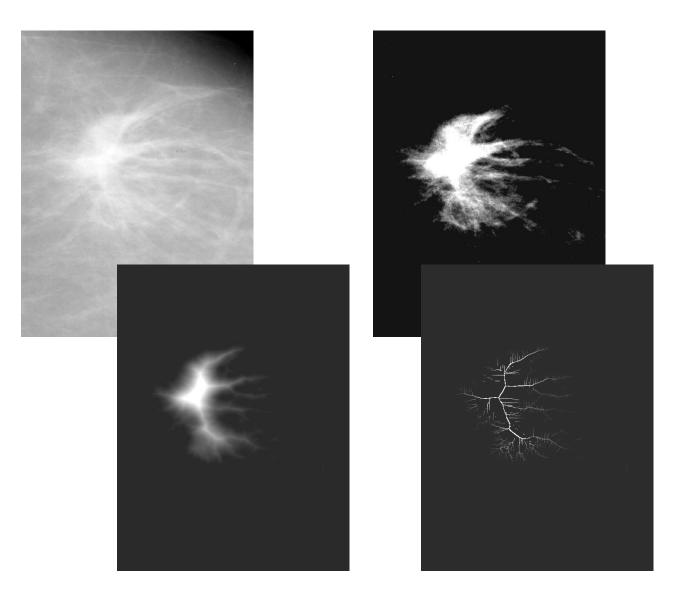


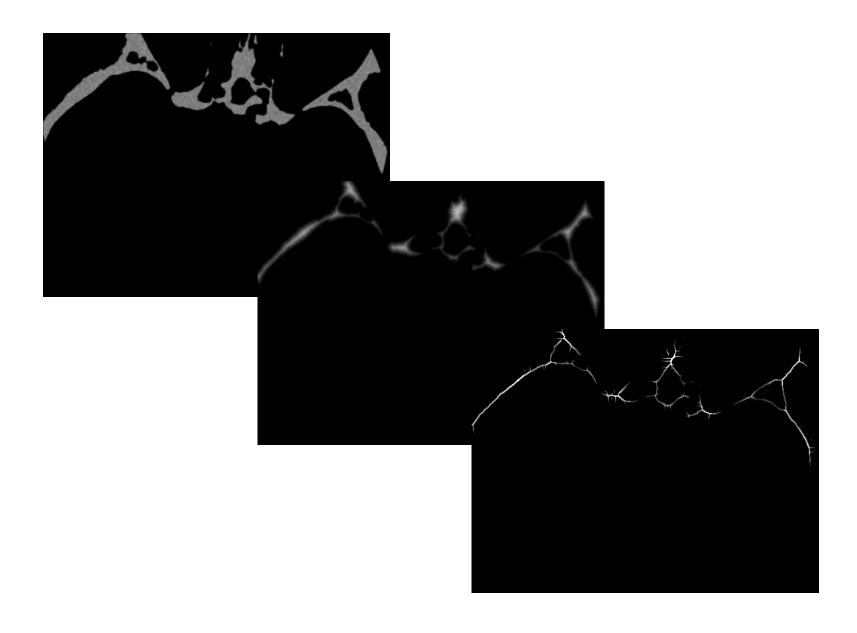
a point p is an axial point if there is no point p' such that a shortest path from p' to the boundary passes through p.

a point p is an axial point if there is no point q in the neighborhood of p such that

$$DT(q) = DT(p) + |p - q|$$





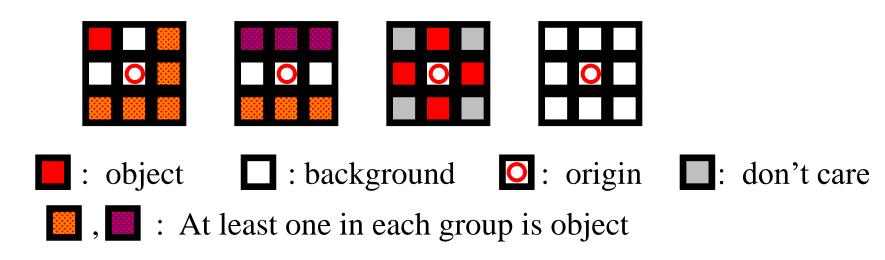


Simple Points

• A points (not necessarily an object point) in a 2D or 3D digital image is <u>a simple point</u> if and only it its binary transformation doesn't change local image topology

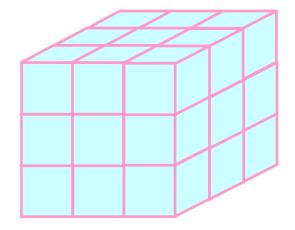
2D simple point characterization is straight forward

• A point that doesn't match with any of the following windows or variations produced by their mirror reflection and/or rotation, is a 2D simple point in (8,4) connectivity



3D Simple Points

- Included neighborhood
 N(p) = set of all 26-adjacent points including p
- Excluded neighborhood $N^*(p)=N(p) - \{p\}$



Theorem 1. $N(p) \cap B$ is always a topological ball.

Therefore, p is a simple points if and only if $N^*(p)$ is a topological ball.

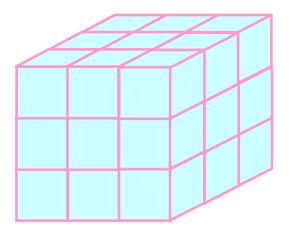
Local Topological Parameters

 $\xi(p)$: number of components in $N^*(p) \cap B$ $\eta(p)$: number of tunnels in $N^*(p) \cap B$ $\delta(p)$: number of cavities in $N^*(p) \cap B$

Cavities in excluded neighborhood

Theorem 2. $\delta(p)$ is one if and only if all the 6neighbors of *p* are in *B*.

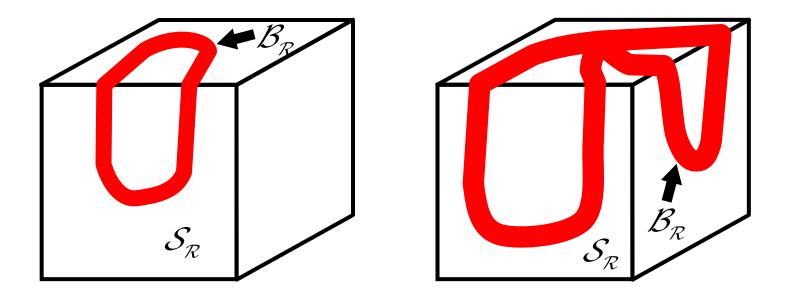
Tunnels in the excluded neighborhood



Key Observations

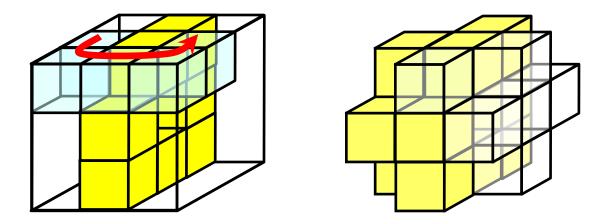
- $N^*(p)$ is a digital topological sphere
- All points in $N^*(p) \cap B$ lie on a digital topological sphere

The Continuous Case



If $S_R - B_R$ is nonempty, the number of tunnels in B_R is one less than the number of components in $S_R - B_R$, and it is zero when $S_R - B_R$ is empty.

The Digital Case



- A path of $N^*(p) B$ crosses a closed loop of $N^*(p) \cap B$
- A pair of disconnected components of $N^*(p) B$ contributes to a tunnel only when both are adjacent to the interior point p.

Tunnels in excluded neighborhood

X(*p*): the set of 6-neighbors of *p* in $N^*(p) - B$ *Y*(*p*): the set of 18-neighbors of *p* in $N^*(p) - B$

Theorem 3. If X(p) is non-empty, $\eta(p)$ is one less than the number of marrow objects in the intersection of X(p) and Y(p), and $\eta(p)$ is zero when X(p) is empty.

3D Simple Point Characterization

For any 3D digital image $(\mathbb{Z}^3, 26, 6, B)$, any point $p \in B$ is a simple point if and only if it satisfies all the four conditions

1) $\xi(p) = 0$, 2) $\eta(p) = 0$ 3) $\delta(p) = 0$

3D Simple Point Characterization

For any 3D digital image (\mathbb{Z}^3 , 26,6, *B*), any point $p \in B$ is a simple point if and only if it satisfies all the four conditions

- 1. $N^*(p) \cap B$ is non-empty,
- 2. $N^*(p) \cap B$ is 26-connected,
- 3. X(p) is non-empty, and
- 4. X(p) is 6-connected in Y(p).

X(*p*): the set of 6-neighbors of *p* in $N^*(p) - B$ *Y*(*p*): the set of 18-neighbors of *p* in $N^*(p) - B$