Course Syllabus

- 1. Color
- 2. Camera models, camera calibration
- 3. Advanced image pre-processing
 - Line detection
 - Corner detection
 - Maximally stable extremal regions
- 4. Mathematical Morphology
 - binary
 - gray-scale
 - skeletonization
 - granulometry
 - morphological segmentation
 - Scale in image processing
- 5. Wavelet theory in image processing
- 6. Image Compression
- 7. Texture
- 8. Image Registration
 - rigid
 - non-rigid
 - RANSAC

References

- Books:
 - Chapter 11, Image Processing, Analysis, and Machine Vision, Sonka et al
 - Chapter 9, Digital Image Processing, Gonzalez & Woods

Topics

- 1. Basic Morphological concepts
- 2. Binary Morphological operations
 - Dilation & erosion
 - Hit-or-miss transformation
 - Opening & closing
- 3. Gray scale morphological operations
- 4. Some basic morphological operations
 - Boundary extraction
 - Region filling
 - Extraction of connected component
 - Convex hull
- 5. Skeletonization
- 6. Granularity
- 7. Morphological segmentation and watersheds

Introduction

- 1. Morphological operators often take a binary image and a structuring element as input and combine them using a set operator (intersection, union, inclusion, complement).
- 2. The structuring element is shifted over the image and at each pixel of the image its elements are compared with the set of the underlying pixels.
- 3. If the two sets of elements match the condition defined by the set operator (e.g. if set of pixels in the structuring element is a subset of the underlying image pixels), the pixel underneath the origin of the structuring element is set to a pre-defined value (0 or 1 for binary images).
- 4. A morphological operator is therefore defined by its structuring element and the applied set operator.
- 5. Image pre-processing (noise filtering, shape simplification)
- 6. Enhancing object structures (skeletonization, thinning, convex hull, object marking)
- 7. Segmentation of the object from background
- 8. Quantitative descriptors of objects (area, perimeter, projection, Euler-Poincaré characteristics)

Example: Morphological Operation

• Let ' \oplus ' denote a morphological operator

$$X \bigoplus B = \{ p \in Z^2 | p = x + b, x \in X, b \in B \}$$

Dilation

• Morphological dilation ' \oplus ' combines two sets using vector of set elements

$$X \bigoplus B = \{p \in Z^2 | p = x + b, x \in X, b \in B\}$$

Commutative: $X \oplus B = B \oplus X$ Associative: $X \oplus (B \oplus D) = (X \oplus B) \oplus D$ Invariant of translation: $X_h \oplus B = (X \oplus B)_h$

If $X \subseteq Y$ then $X \oplus B \subseteq Y \oplus B$

Erosion

1. Morphological erosion '⊖' combines two sets using vector subtraction of set elements and is a dual operator of dilation

$$X \ominus B = \{ p \in Z^2 | \forall b \in B, p + b \in X \}$$

Not Commutative: $X \ominus B \neq B \ominus X$ Not associative: $X \ominus (B \ominus D) = (X \ominus B) \ominus D$ Invariant of translation: $X_h \ominus B = (X \ominus B)_h$ and $X \ominus B_h = (X \ominus B)_{-h}$ If $X \subseteq Y$ then $X \ominus B \subseteq Y \ominus B$

Duality: Dilation and Erosion

• Transpose \check{A} of a structuring element A is defined as follows

$$\check{A} = \{-a | a \in A\}$$

• Duality between morphological dilation and erosion operators

$$(X \ominus B)^c = X^c \oplus \check{B}$$

Hit-Or-Miss transformation

• Hit-or-miss is a morphological operators for finding local patterns of pixels. Unlike dilation and erosion, this operation is defined using a composite structuring element $B = (B_1, B_2)$. The hit-or-miss operator is defined as follows

 $X \otimes B = \{x | B_1 \subset X \text{ and } B_2 \subset X^c\}$

Hit-Or-Miss transformation: another example

Relation with erosion:

 $X\otimes B=(X\ominus B_1)\cap (X^c\ominus B_2)$

Hit-Or-Miss transformation: yet another example

• Erosion and dilation are not inverse transforms. An erosion followed by a dilation leads to an interesting morphological operation called **opening**

• Erosion and dilation are not inverse transforms. An erosion followed by a dilation leads to an interesting morphological operation called **opening**

• Erosion and dilation are not inverse transforms. An erosion followed by a dilation leads to an interesting morphological operation called **opening**

• Erosion and dilation are not inverse transforms. An erosion followed by a dilation leads to an interesting morphological operation called **opening**

Closing

• A dilation followed by an erosion leads to the interesting morphological operation called **closing**

 $X \bullet B = (X \oplus B) \ominus B$

Closing

• A dilation followed by an erosion leads to the interesting morphological operation called **closing**

 $X \bullet B = (X \oplus B) \ominus B$

Closing

• A dilation followed by an erosion leads to the interesting morphological operation called **closing**

 $X \bullet B = (X \oplus B) \ominus B$

Morphological Boundary Extraction

• The boundary of an object A denoted by $\delta(A)$ can be obtained by first eroding the object and then subtracting the eroded image from the original image.

 $\delta(A) = A - A \ominus B$

Quiz

- How to extract edges along a given orientation using morphological operations?
- An opening followed by a closing
- Or, a closing followed by an opening

$$(X \circ B) \bullet B$$
$$(X \bullet B) \circ B$$

Gray Scale Morphological Operation

- A: a subset of n-dimensional Euclidean space, $A \subset \mathbb{R}^n$
- *F*: support of *A*

$$F = \{ x \in R^{n-1} \mid \exists y \in R \text{ s.t. } (x, y) \in A \}$$

• Top hat or surface $T(A): F \to \mathbb{R}^n$

$$T(A)(x) = \max\{y \mid (x, y) \in A\}$$

- A top surface is essentially a gray scale image $f: F \to R$
- An umbra U(f) of a gray scale image f: F → R is the whole subspace below the top surface representing the gray scale image f. Thus,

$$U(f) = \{(x, y) \in F \times R, y \le f(x)\}$$

Gray Scale Morphological Operation

Gray Scale Morphological Operation

• The gray scale dilation between two functions may be defined as the top surface of the dilation of their umbras

 $f \stackrel{.}{\oplus} k = T(U(f) \oplus U(k))$

• More computation-friendly definitions

$$f \stackrel{\cdot}{\oplus} k = \max_{z \in k} \{ f(x-z) + k(z) \}$$
$$f \stackrel{\cdot}{\Theta} k = \min_{z \in k} \{ f(x+z) - k(z) \}$$

• Commonly, we consider the structure element k as a binary set. Then the definitions of gray-scale morphological operations simplifies to

$$f \stackrel{.}{\oplus} k = \max_{z \in k} \{f(x-z)\}$$
$$f \stackrel{.}{\Theta} k = \min_{z \in k} \{f(x+z)\}$$

Morphological Boundary Extraction

• The boundary of an object A denoted by $\delta(A)$ can be obtained by first eroding the object and then subtracting the eroded image from the original image.

$$\delta(A) = A - A\Theta B$$

Quiz

• How to extract edges along a given orientation using morphological operations?

Morphological noise filtering

- An opening followed by a closing
- Or, a closing followed by an opening

 $(X \circ B) \bullet B$ $(X \bullet B) \circ B$

Morphological noise filtering

MATLAB DEMO

- Task: Given a binary image *X* and a (seed) point *p*, fill the region surrounded by the pixels of *X* and contains *p*.
- A: An image where only the boundary pixels are labeled 1 and others are labeled 0
- A^c : The Complement of A
- We start with an image X_0 where only the seed point p is 1 and others are 0. Then we repeat the following steps until it converges

$$X_k = (X_{k-1} \oplus B) \cap A^c$$
 $k = 1, 2, 3, ...$

The boundary of an object A denoted by $\delta(A)$ can be obtained by first ۲ eroding the object and then subtracting the eroded image from the original image.

$$\delta(A) = A - A\Theta B$$

$$X_k = (X_{k-1} \oplus B) \cap \delta(A)^c \qquad k = 1, 2, 3, \dots$$

Homotopic Transformation

• Homotopic tree

Quitz: Homotopic Transformation

• What is the relation between an element in the ith and i+1th levels?

