
55:148 Digital Image Processing 
Chapter 11  
3D Vision, Geometry 
 
Topics: 

Basics of projective geometry 
Points and hyperplanes in projective space 
Homography 
Estimating homography from point correspondence 

The single perspective camera 
An overview of single camera calibration 
Calibration of one camera from the known scene 

Two cameras, stereopsis 
The geometry of two cameras. The fundamental matrix 
Relative motion of the camera; the essential matrix 
Estimation of a fundamental matrix from image point correspondences 
Applications of the epipolar geometry in vision 

Three and more cameras 
Stereo correspondence algorithms 



3D VISION INTRO 
 
Overall Aim: 
Marr 1982: From an image (or a series of images) of a scene, derive an accurate three-
dimensional geometric description of the scene and quantitatively determine the properties 
in the scene. 
 
Examples: http://www.2d3.com/ 
 
Major challenges 

Perspective projection : All points along a line radiating from  the optical center are projected 
onto a single image point → loss of information → need for additional information to solve the 
inverse task, i.e., mapping each 2D image point into the 3D scene. 
 
3D geometry and intensity shading: A complex relation governed multiple variables. 
 
Mutual occlusion: Further complicates the vision task at conceptual level. 
 
Noise: Additional complexity to many algorithms reducing their sensitivity and accuracy. 

 



3D VISION INTRO 
 
Three major intertwined modules in a computer-based vision system 
 

Feature observability in images: Selection of task-relevant features in the original image data (e.g., 
points, lines, corners etc.) 
 
Representation: Choice of the models for the observed world (e.g., a triangulated 3D surface 
representation of the observed scene) 
 
Interpretation: Extraction of high level knowledge from the mathematical model of stored data 
(e.g., object detection/recognition, correspondence between two partially overlapping scenes 
etc.) 



Three major building blocks/expertise in a computerized 3D vision system 
 

Computational theory: Combines analytic and geometric approaches with device-
dependent properties to solve the inverse mapping from a 2D captured image to the 
3D scene 
 

primal sketch → 2.5D → full 3D representation 
 
Representation and algorithms: 3D scene data representation and algorithms 
manipulating them and extracting knowledge (high level information) from 3D scene 
representation 
 
Implementation: Physical realization of the algorithms (programs + hardware)  
 

Different vision paradigms 
 

Active versus passive vision 
 
Qualitative versus purposive vision 



Basics of projective geometry 
 
Single or multiple view geometry deals with mathematics of relation between  
 

• 3D geometric features (points, lines, corners)  in the scene 
• their camera projections 
• relations among multiple camera projections of a 3D scene 

 
Points and hyperplanes in projective space 
 

Scene:  (𝒅 + 𝟏)-dimensional space excluding the origin, i.e.,  ℜ𝒅+𝟏 − 𝟎  
Why origin is excluded? 
Origin ≈ pinhole ≈ optical center 
 

Projective scape: a hyperplane 𝓟𝒅 in the (𝒅 + 𝟏)-dimensional scene NOT passing through 
the origin 
 
An equivalence relation “≅” is defined as follows: 
 

𝒙𝟏, … , 𝒙𝒅+𝟏
𝐓 ≅ 𝒙𝟏

′ , … , 𝒙𝒅+𝟏
′ 𝐓 

 

𝐢𝐟𝐟 ∃ 𝜶 ≠ 𝟎 𝐬. 𝐭. 𝒙𝟏, … , 𝒙𝒅+𝟏
𝐓 = 𝜶 𝒙𝟏

′ , … , 𝒙𝒅+𝟏
′ 𝐓 



Perspective projection of parallel lines 
 



Homogeneous points 
 
Each equivalent class of the relation “≅” generates an open line from the origin.  
 
Note that the origin is not included in any of these lines and thus the disjoin property of 
equivalent classes is satisfied  
 
For each line or equivalent class, exactly one point is projected in the acquired image and is 
the point where the projective hyperplane intersects the line. These points in the projective 
space are referred to a homogeneous points.  
 
What is the property of homogenous points? 
 
Homogeneous points are coplanar lying on the projection plane. 
 
For simplicity, let us assume that our projection plane is 𝒛 = 𝟏 
 



Homogeneous points 
 
Note that homogeneous points form the image hyperplane.  
 
Thus, to determine the perspective projection of a scene point, we need to determine 
corresponding homogeneous point 
 

𝒙𝟏, … , 𝒙𝒅+𝟏
𝐓    

𝑷
    𝒙𝟏

′ , … , 𝒙𝒅+𝟏
′ = 𝟏 𝐓, 

 
where 𝒙𝒊 = 𝜶𝒙𝒊

′  |  𝜶: 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭. 
 
Note that the points 𝒙𝟏, … , 𝒙𝒅, 𝟎 𝐓 do not have an Euclidean counterpart 
 
• Consider the limiting case 𝒙𝟏, … , 𝒙𝒅, 𝜶 𝐓 that is projectively equivalent to 

𝒙𝟏/𝜶, … , 𝒙𝒅/𝜶, 𝟏 𝐓, and assume that 𝜶  𝟎. 
• This corresponds to a point on the projective hyperplane 𝓟𝒅 going to infinity in the 

direction of the radius vector 𝒙𝟏, … , 𝒙𝒅, 𝟎 𝐓 



Properties of projection  
 
A line in the scene space through (but not 
including) the origin is mapped onto a point 
in the projective plane 
 
A plane in the scene space through the 
origin (but not including) is mapped to a 
line on the projection plane 
 
 
 



Homography 
 
Homography ≈ Collineation ≈ Projective 
transformation 
is a mapping from one projection plane to 
another projection plane for the same 𝒅 + 𝟏 -
dimensional scene and the common origin 

𝓟𝒅    
𝑯
 𝓟 𝒅. 

 
Also, expressed as  

𝐮′ ≅ 𝑯𝐮, 
where 𝑯 is a 𝒅 + 𝟏 × 𝒅 + 𝟏  matrix. 
 
Property: 

Any three collinear points in 𝓟𝒅 remain collinear 
in 𝓟 𝒅 
Prove! 
 
Satisfies cross ratio property (see the figure) 
 
 
 



Matrix formulation for Homography 
 

𝜶
𝒖′

𝒗′

𝟏

=

𝒉𝟏𝟏 𝒉𝟏𝟐 𝒉𝟏𝟑

𝒉𝟐𝟏 𝒉𝟐𝟐 𝒉𝟐𝟑

𝒉𝟑𝟏 𝒉𝟑𝟐 𝒉𝟑𝟑

𝒖
𝒗
𝟏

 

 
The scale factor 𝜶 ≠ 𝟎 and 𝐝𝐞𝐭 𝑯 ≠0; otherwise everything is mapped onto a single point. 
Eliminating the scale factor 𝜶, we get  
 

𝒖′ =
𝒉𝟏𝟏𝒖+𝒉𝟏𝟐𝒗+𝒉𝟏𝟑

𝒉𝟑𝟏𝒖+𝒉𝟑𝟐𝒗+𝒉𝟑𝟑
       and      𝒗′ =

𝒉𝟐𝟏𝒖+𝒉𝟐𝟐𝒗+𝒉𝟐𝟑

𝒉𝟑𝟏𝒖+𝒉𝟑𝟐𝒗+𝒉𝟑𝟑
  



Various linear transformations 
 



Sub groups of homographys 
 
Any homography can be uniquely decomposed as  

𝑯 = 𝑯𝑷𝑯𝑨𝑯𝑺 
where  

𝑯𝑷 = 𝑰 𝟎 

𝐚𝐓 𝒃
,      𝑯𝑨 = 𝑲 𝟎 

𝟎 𝐓 𝟏
, 𝑯𝑺 =

𝑹 −𝑹𝐭
𝟎 𝐓 𝟏

 

 



Estimating homography from point correspondence 
 
Given a set of orders pairs of points 𝒖𝒊, 𝒖𝒊

′
𝒊=𝟏
𝒎  

 
To solve the homogeneous system of linear equations 

𝜶𝒊𝒖𝒊
′ = 𝑯𝒖𝒊,        𝒊 = 𝟏, … , 𝒎 

for 𝑯 and 𝜶𝒊.  
 
Number of equations : 𝒎(𝒅 + 𝟏) 
 
Number of unknowns: 𝒎 + 𝒅 + 𝟏 𝟐 − 𝟏 
 
Degenerative configuration, i.e., 𝑯 may not be uniquely solved even if 𝒎 ≥ 𝐝 + 𝟐 and 
caused when 𝒅 or more points are coplanar 
 
Correspondence of more than sufficient points lead to the notion of optimal fitting reducing 
the effect of noise 



Maximum likelihood estimation 
 

𝒖 𝒊, 𝒗 𝒊
𝐓 and  𝒖 𝒊

′, 𝒗 𝒊
′ 𝐓 | 𝒊 = 𝟏, … , 𝒎 are identified corresponding points in two different 

projection planes 
 
Principle: Find the homography (i.e., the transformation matrix 𝑯) that maximizes the 
likelihood mapping of the points 𝒖 𝒊, 𝒗 𝒊

𝐓 on the first plane to 𝒖 𝒊
′, 𝒗 𝒊

′ 𝐓 on to the second 
plane  
 
Model:  
Ideal points are in the vicinity of the identified points, i.e., there noise in the process of 
locating the points 𝒖 𝒊, 𝒗 𝒊

𝐓 and 𝒖 𝒊
′, 𝒗 𝒊

′ 𝐓 
 
Method to solve the problem 
 
• Determine the ML function using Gaussian model  
• It contains several multiplicative terms 
• Take log → multiplications are converted to addition 
• Remove the minus sign (see the Gaussian expression)  
• Maximization is converted to a minimization term 



Final expression for maximum likelihood estimation  
 

min
𝒉,𝒖𝒊,𝒗𝒊

 

𝒖𝒊 − 𝒖 𝒊
𝟐 + 𝒗𝒊 − 𝒗 𝒊

𝟐 +
𝒉𝟏𝟏𝒖𝒊 + 𝒉𝟏𝟐𝒗𝒊 + 𝒉𝟏𝟑

𝒉𝟑𝟏𝒖𝒊 + 𝒉𝟑𝟐𝒗𝒊 + 𝒉𝟑𝟑
− 𝒖 𝒊

′

𝟐

+

𝒉𝟐𝟏𝒖𝒊 + 𝒉𝟐𝟐𝒗𝒊 + 𝒉𝟐𝟑

𝒉𝟑𝟏𝒖𝒊 + 𝒉𝟑𝟐𝒗𝒊 + 𝒉𝟑𝟑
− 𝒗 𝒊

′

𝟐

𝒎

𝒊=𝟏

 

 


