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Abstract

We present a study of fifteen parallel thinning algorithms, based on the framework of
critical kernels. We prove that ten among these fifteen algorithms indeed guarantee
topology preservation, and give counter-examples for the five other ones. We also
investigate, for some of these algorithms, the relation between the medial axis and
the obtained homotopic skeleton.
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Introduction

During the last 40 years (the first parallel thinning algorithm was proposed
by D. Rutovitz in 1966 [31]), many 2D parallel thinning methods have been
proposed, see in particular [1,28,8,16,14,13,18,10,2]. Proving that such an al-
gorithm always preserve topology is not an easy task, even in 2D. The proofs
found in the literature are often combinatorial and cannot be extended to 3D,
a fortiori to higher dimensions. For the 2D case, C. Ronse introduced the min-
imal non simple sets [29] to study the conditions under which simple points
can be removed in parallel while preserving topology. This leads to verification
methods for the topological soundness of thinning algorithms. Such methods
have been proposed for 2-D algorithms by C. Ronse [29] and R. Hall [15], they
have been developed for the 3-D case by T.Y. Kong [19,20] and C.M. Ma [25],
as well as for the 4-D case by C-J. Gau and T.Y. Kong [11,21]. For the 3D
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case, G. Bertrand introduced the notion of P-simple points [3] as a verifica-
tion method but also as a methodology to design parallel thinning algorithms
[4,7,22,23].

In [5], G. Bertrand introduces a general framework for the study of parallel
thinning in any dimension in the context of abstract complexes. As shown in
[6], this framework allows to retreive both the notion of minimal non-simple set
and the notion of P-simple point. A new definition of a simple point is proposed
in [5], this definition is based on the collapse operation which is a classical tool
in algebraic topology and which guarantees topology preservation. Then, the
notions of an essential face and of a core of a face allow to define the critical
kernel K of an object X. The most fundamental result proved in [5] is that, if
a subset Y of X contains K, then X collapses onto Y , i.e., Y is a retraction
of X.

In [6], the particular case of 2D structures in spaces of two and three dimen-
sions is considered. Several new parallel thinning algorithms are proposed and
compared with the existing ones, when possible. For example, one of these
new algorithms is proved to include the medial axis and to be minimal for this
property; this algorithm has no equivalent in the literature.

Thanks to the general framework of critical kernels, and to the results proved
in [6] for the 2D case, we analyse in this report the topological soundness of
fifteen parallel thinning algorithms. To limit the study, we do not consider
here any algorithm based on directional sub-steps or sub-grids.

This analyzis is performed “automatically” with the help of a computer pro-
gram. Similar computerized tests have already been proposed by R. Hall [15],
C-M. Ma [24] for 2D, based on the notion of minimal non-simple sets [29], and
by C-M. Ma [24] for 3D.

Here, we prove the topological soundness of ten among the fifteen analyzed
algorithms. For the five other ones, we show the counter-examples found by
our program. We also investigate, for some of these algorithms, the relation
between the medial axis and the obtained homotopic skeleton.

Some basic notions are recalled in Sec. 1, the verification method is described
in Sec. 2, and the following sections are devoted to the different algorithms
under study. A general discussion concludes this report.
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1 Basic notions

In most papers on digital topology, a binary image is considered as a finite
subset of Z2. However, an alternative interpretation consists in considering
an image as a finite set of pixels, that is, unit squares which have all their
vertices in Z2. The latter interpretation is taken in [6], in order to make a link
between the framework of critical kernels and digital topology. However, both
interpretations are clearly equivalent and can be easily translated into each
other.

We denote by G2 the set of all the pixels, also called the square grid, and we
consider only finite subsets of G2.
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Fig. 1. Numbering scheme for the pixels in the vicinity of P .

Let P be a pixel in G2. The pixels in the vicinity of P are identified by
the numbers 0, . . . , 23 (see Fig. 1), more precisely, those pixels are denoted
by Γ0(P ), . . ., Γ23(P ). The set Γ∗(P ) = {Γi(P ) | 0 ≤ i ≤ 7} is called the
neighborhood of P ; each of these pixels is called a neighbor of P . The four
pixels of Γ∗S(P ) = {Γ0(P ),Γ2(P ),Γ4(P ),Γ6(P )} are called the strong neighbors
of P . If P,Q are pixels and if Q ∈ Γ∗(P ) (resp. Γ∗S(P )), then we say that
P,Q are adjacent (resp. strongly adjacent). We set Γ(P ) = Γ∗(P ) ∪ {P} and
ΓS(P ) = Γ∗S(P )∪{P}. Notice that Γ∗ and Γ∗S correspond to the usual notions
of 8- and 4-adjacency, respectively.

Let X be a subset of G2 (the “object”). We denote by X the complementary
set of X (the “background”). We say that a pixel P ∈ X is a border pixel if it
is strongly adjacent to a pixel in X.

A sequence π = 〈x0, . . . , xl〉 of pixels in X is a path in X (from x0 to xl) if xi
and xi+1 are adjacent for each i = 0, . . . , l− 1. We say that X is connected if,
for any pair of pixels x, y in X, there is a path in X from x to y. We say that
Y ⊆ X is a connected component of X if Y is connected, and if Y is maximal
for these two properties (i.e., if we have Z = Y whenever Y ⊆ Z ⊆ X and
Z connected). The notions of strong path, stronly connected, strong connected
component are defined analogously, using the strong adjacency.

Intuitively a pixel P of X is simple if its removal from X “does not change
the topology of X”. In [5], G. Bertrand introduces a definition of a simple n-
dimensional element based on the operation of collapse [12]. In the square grid,
we retreive thanks to this definition (see [6]) a well-known characterization of
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simple pixels given by A. Rosenfeld [30].

Property 1. Let X ⊂ G2, and let P ∈ X. The pixel P is simple for X if and
only if:
i) P is a border pixel; and
ii) Γ∗(P ) ∩X is non-empty and connected.

The following notations will be used in sections 3− 15 (algorithms).

Let X ⊂ G2 and let P ∈ X. In the sequel, for any i = 0 . . . 23, we denote by
Pi the boolean value which is 1 if Γi(P ) ∈ X and 0 otherwise. We denote by
Pi the negation of the boolean Pi, in other words, Pi = 1− Pi.

We denote by D(P ) the number of strong connected components of pixels
of X in the neighborhood of P .

We denote by B(P ) the number of neighbors of P which belong to X.

We denote by C(P ) the number of patterns “01” in the ordered sequence
P0P1 . . . P7P0, in other words, C(P ) = 1

2

∑8
i=1 |Pi mod 8 − Pi−1|. This number is

sometimes called the crossing number of P in the literature.

2 Verification methodology

We present here a notion introduced in [6], which allows for testing the topo-
logical soundness of parallel deletion of simple pixels. The original definition
is not given here for the sake of simplicity, instead we give a characterization
which is proven in [6] to be equivalent to the definition.

Let X ⊂ G2. We say that a pixel is crucial (for X) if it is matched by one
of the masks depicted in Fig. 2. We say that a set C of crucial pixels forms a
crucial clique if any two distinct pixels in C are adjacent to each other, and
if C is maximal for this property.

In [6], it has been proved that an algorithm which does never remove in a single
step any non-simple pixel nor any crucial clique, always produces a retraction
of the original object, in other words, it always preserves topology.

Definition 2. Let X ⊂ G2 and let Y ⊆ X.
We say that Y is a crucial retraction of X if:
i) Y contains each pixel of X which is not simple; and
ii) Y contains at least one pixel of each crucial clique of X.
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Fig. 2. Patterns and masks for crucial pixels and cliques. The 11 masks correspond-
ing to these 5 patterns are obtained from them by any series of π/2 rotations. The
label 0 indicates pixels that must belong to the set X. The label S indicates pixels
that must belong to the set S which is the set composed of all simple pixels of X.
For mask C, at least one of the pixels marked A and at least one of the pixels
marked B must be in X. If one of these masks matches the sets 〈X,S〉, then all the
pixels which correspond to a label S in the mask are recorded as “matched”.

Property 3 ([6]). Let X ⊂ G2 and let Y ⊆ X.
If Y is a crucial retraction of X, then Y is a retraction of X.

Notice that the configurations of Fig. 2 also characterize the minimal non-
simple sets as defined by C. Ronse [29].

Let X ⊂ G2, let A(X) denote the result of one step of a parallel thinning
algorithm A on the input X. We suppose furthermore that the fact that a
pixel P belongs to A(X) or not depends only on the set X ∩ Γ2(P ), where
Γ2(P ) = Γ(Γ(P )). We say that an algorithm A which satisfies this condition is
25-local. We say that an algorithm A is symmetrical if A(R(X)) = R(A(X)),
for any shape X and any rotation R by a multiple of π/2).

Let P be any pixel in G2, let X1 be the set of all the subsets of Γ2(P ) which
contain P . There are 224 = 16, 777, 216 such subsets. Let X2 be the set of all
the sets X of X1 such that P is not simple for X. Clearly, if an algorithm A is
25-local and if P belongs to A(X) for any X in X2, then whatever its input,
algorithm A does not remove any non-simple pixel in a single step.

The family X2 can be generated by a computer program by producing and
filtering X1, but the following strategy avoids to generate unnecessary subsets.
First, we generate the subsets X of Γ∗(P ) such that P is simple for X ∪ {P}
(there are 116 such subsets). Then, for those sets, we “complete” them with
all possible subsets of Γ2(P ) \ Γ(P ) (there are 216 such subsets). In this way,
only the necessary 9, 175, 040 subsets are generated and tested.

The same is done for the different kinds of crucial cliques. Let us take just one
example, the other kinds of crucial cliques are managed in a similar way. Let
P1 and P2 be two strongly adjacent pixels belonging to the same row, let X3 be
the set of all the subsets of Γ2(P1)∪Γ2(P2) which contain both P1 and P2. Let
X4 be the set of all the sets X of X3 such that {P1, P2} is a crucial clique for
X. This can be checked using the masks C and C2 of Fig. 2. If either P1 or P2

belongs to A(X) for any X in X4, then whatever its input, algorithm A does
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not remove any crucial clique of this kind in a single step. To avoid generating
the 228 = 268, 435, 456 sets of X3, we apply the same strategy as for non-simple
pixels and generate only the 50, 593, 792 sets of X4. This has to be done also
for P1 and P2 belonging to the same column, in the case where algorithm A is
not symmetrical. For each of the three remaining kinds of crucial cliques, the
number of configurations (regardless of the rotations) is equal to 1, 048, 576.
On the whole, testing the topological soundness of a thinning algorithm with
this procedure takes only a few minutes with an ordinary desktop computer.

To summarize, we have the following property.

Property 4. Let A be a 25-local thinning algorithm. If all the tests discussed
above succeed for A, then whatever the set X ⊂ G2, the set A(X) is a crucial
retraction of X. Reciprocally, if there exists sets X such that A deletes a non-
simple pixel or a crucial clique of X, then the above procedure finds at least
one counter-example.

3 Rutovitz, 1966 [31]

This is, to our best knowledge, the first parallel thinning algorithm ever pro-
posed.

Let P be a pixel in G2, let X ⊂ G2. We say that P is R-deletable if the five
following conditions hold:
i) P ∈ X
ii) B(P ) ≥ 2
iii) C(P ) = 1
iv) P2 ∧ P0 ∧ P4 = 0 or C(P2) 6= 1
v) P2 ∧ P0 ∧ P6 = 0 or C(P0) 6= 1

Algorithm RUT66 (Input /Output : set X)
01. Repeat
02. Y ← set of pixels in X which are R-deletable
03. X ← X \ Y
04. Until Y = ∅

Remark 5. Algorithm RUT66 does not preserve topology, as shown by the
following counter-example.

In the configuration of Fig. 3, all the four object pixels are R-deletable. Thus,
this entire connected component is deleted by the algorithm. This fact is well
known and has been pointed out by several authors. It is also well known that
Rutovitz’ algorithm may be easily “repaired” by adding the “restoring mask”
of Fig. 12(11).
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Fig. 3. Counter-example for algorithm RUT66.

4 Pavlidis 1981 [27,28]

In [27,28], T. Pavlidis presents a parallel thinning algorithm with several vari-
ants. With one of these variants, a theorem is stated which says that a perfect
reconstruction of the original object may be achieved from the labeled skeleton.
We show that the theorem is false and that the proposed proof is incomplete.

We will use, as much as possible, the same vocabulary and notations as in
[28].

The contour of a set of pixels X is defined as the set of pixels in X which
have at least one strong neighbor not in X. In the following illustrations, the
pixels which are not in X, called background pixels , will be given the value 0 ;
the contour pixels will be given the value 2 ; and the pixels which belong to X
and which are not contour pixels will be given the value 1.

A contour pixel is called multiple 1 if it satisfies one of the four following
conditions.
(a) It has at most one nonzero neighbor.
(b) Its neighborhood conforms to either of the patterns shown in Fig. 4(a,b),
or those obtained from them by rotations of multiples of π/2, where at least
one of each group of pixels marked with A or B must be nonzero, and where
pixels marked D may have any value.
(c) It has no neighbor labeled 1.
(d) Its neighborhood conforms to the pattern shown in Fig. 4(c), or those
obtained from it by rotations of multiples of π/2, where at least one of each
pair of pixels marked with A or B or C must be nonzero. If both pixels labeled
C are nonzero, then the values of pixels labeled A and B can be anything.

A corner pixel if one whose neighborhood conforms to the pattern shown in
Fig. 4(d), or those obtained from it by rotations of multiples of π/2, where
the pixel labeled X must be nonzero.

1 In [27,28] this definition corresponds to pixels which are either multiple or “ten-
tatively multiple”. This is the condition which is used for the thinning algorithm
allowing reconstruction.
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Fig. 4. (a,b,c,d): Patterns used to define the thinning algorithm PAV81.

Algorithm PAV81 (Input /Output : set X)
01. Repeat
02. F ← set of all contour pixels of X
03. M ← set of all pixels in F

which are either multiple pixels or corner pixels
04. Y = F \M
05. X ← X \ Y .
06. Until Y = ∅

Property 6. For any subset X of G2, the result of PAV81 after one step of
execution is a crucial retraction of X.

At the end the algorithm, the skeletal pixels (that is, the remaining ones) are
labelled with the number of the iteration at which they first appeared as a
contour pixel. The label of a pixel p will be denoted by λp.

We recall the notions of 4-distance (or city block distance) and 4-ball in order
to have a simpler definition of reconstruction, which is introduced in [27,28]
as an algorithm.

Let d4(x, y) denote the 4-distance between pixels x and y, that is, d4(x, y) =
|y1−x1|+ |y2−x2|, where x1, x2 (resp. y1, y2) denote the coordinates of pixel x
(resp. y). Let B4(x, r) denote the 4-ball of center x and radius r with respect
to the distance d4, that is, B4(x, r) = {y | d4(x, y) < r}.

Claim ([28], theorem 1). Let X be the original object, S the skeleton
obtained by the above thinning algorithm. The labeled skeleton allows perfect
reconstruction of the original image, in other words,

⋃

p∈S
B4(p, λp) = X

The proof given in [28] uses the two following lemmas, and concludes without
other arguments that the theorem holds.

Lemma 1 During the thinning process, a deletable pixel always has a strong
neighbor that remains in the set.

Lemma 2 If a pixel is placed in the skeleton after the first iteration, then all
its four strong neighbors belonged to the set in the previous iteration.
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We can see with the following counter-example that these two lemmas are
indeed not sufficient to prove the theorem.

Remark 7. The previous claim is false, as proved by the following counter-
example (Fig. 5).
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Fig. 5. (a): Original image. (b): Intermediate result after the first thinning step,
with contour pixels labeled 2. (c): Final skeleton with labels. (d): Reconstructed
object.

The problem occurs at step 2, when the pixel x circled in Fig. 5(b) is examined.
This pixel does not satisfy any condition for being a multiple pixel, thus it
is not retained in the skeleton. Consequently, its south neighbor y (circled
in Fig. 5(c)) which is a skeleton pixel, will be labeled by step number 3. It
will thus generate a ball of radius 3 during the reconstruction. Nevertheless,
x satisfies lemma 1 and y satisfies lemma 2.

Even if pixel y is labeled by its distance to the background (that is, 2), the
reconstruction is still not correct (see Fig. 6(a,b)). A correct result, allowing
exact reconstruction, is shown in Fig. 6(c).
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Fig. 6. (a): Skeleton with pixels labeled by their distance to the background. (b):
Object reconstructed from (a). (c): Correct labeled skeleton allowing exact recon-
struction.
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5 Chin, Wan, Stover and Iverson, 1987 [8]
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Fig. 7. Masks for the Chin et al.’s algorithm. (1, 2): thinning masks (with all their
π/2 rotations). (3, 4): restoring masks.

Algorithm CWSI87 (Input /Output : set X)
01. Repeat
02. Y ← set of pixels in X which match anyone of the thinning masks

but no restoring mask of Fig. 7
03. X ← X \ Y
04. Until Y = ∅

Property 8. For any subset X of G2, the result of CWSI87 after one step of
execution is a crucial retraction of X.

6 Holt, Stewart, Clint and Perrott 1987 [16]

The following description of the Holt et al.’s algorithm is borrowed from [14]
(see Sec. 8).

Let P be a pixel in G2, let X ⊂ G2. We say that P is deletable if P ∈ X,
1 < B(P ) < 7 and D(P ) = 1. We say that P is H-deletable if P is deletable
and none of the following conditions hold:
i) P2 = P6 = 1 and P0 is deletable
ii) P0 = P4 = 1 and P6 is deletable
iii) P0, P7 and P6 are deletable

Algorithm H87 (Input /Output : set X)
01. Repeat
02. Y ← set of pixels in X which are H-deletable
03. X ← X \ Y
04. Until Y = ∅

Property 9. For any subset X of G2, the result of H87 after one step of
execution is a crucial retraction of X.
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7 Zhang and Wang, 1988 [33]

Let P be a pixel in G2, let X ⊂ G2. We say that P is ZW-deletable if the five
following conditions hold:
i) P ∈ X
ii) 2 ≤ B(P ) ≤ 6
iii) C(P ) = 1
iv) P2 ∧ P0 ∧ P4 = 0 or P12 = 1
v) P2 ∧ P0 ∧ P6 = 0 or P8 = 1

Algorithm ZW88 (Input /Output : set X)
01. Repeat
02. Y ← set of pixels in X which are ZW-deletable
03. X ← X \ Y
04. Until Y = ∅

Remark 10. Algorithm ZW88 does not preserve topology, as shown by the
same counter-example as for Rem. 5.

8 Hall 1989 [14]

In [14], R. Hall proposes a variant of algorithm H87, that we call here H89,
and proves the topological soundness of both algorithms, using combinatorial
arguments.

Algorithm H89 is similar to H87, just replacing “1 < B(P ) < 7” by “2 <
B(P ) < 7” in the definition of a deletable pixel, with the aim of preserving
some “diagonal branches”.

Property 11. For any subset X of G2, the result of H89 after one step of
execution is a crucial retraction of X.

9 Wu and Tsai, 1992 [32]

Algorithm WT92 (Input /Output : set X)
01. Repeat
02. Y ← set of pixels in X which match anyone of the masks of Fig. 8
03. X ← X \ Y
04. Until Y = ∅

Remark 12. Algorithm WT92 does not preserve topology, as shown by the
same counter-example as for Rem. 5.

11



B1
P1 0

A

1

1 1

B
P1

1 1

A

1

0
1 P

1 1
1 1

A

B 1
0

1

P 1
A

11
1

1
1

0 B
0

1
P 01

0
P

0

1

0

1
0 1 P

0 0

1
0 1

0

00

(1) (2) (3) (4) (5) (6) (7)

P 01
0

1

0
P

0

1

0
10

1
P

0 0
10

1

0

0 0
P

0 0
0

1

0

1
0
1

P
0 0

1
01

0

1

0
P 0
0

1

0

1

0

1
0 P

00

1
0 1
0

1

0

(8) (9) (10) (11) (12) (13) (14)

Fig. 8. Masks for the Wu and Tsai’s algorithm. For masks 1, 2, 3 and 4, at least
one of the pixels A,B must be in X.

It can be seen that each one of the four pixels of Fig. 3 can be matched by
one of the masks (5), (6), (8) or (9).

10 Guo and Hall 1992 [13]

Let P be a pixel in G2, let X ⊂ G2. We define the following boolean expres-
sions:
G(P ) = P0 ∧ P2 ∧ P4 ∧ P6

L(P ) = [(P2 ∧ P6 ∧ P20) ∧ (P1 ∨ P0 ∨ P7) ∧ (P5 ∨ P4 ∨ P3)] ∨ (P0 ∧ P4 ∧ P16)

We say that P is GHa-deletable if the four following conditions hold:
i) D(P ) = 1
ii) G(P ) = 0
iii) B(P ) > 2
iv) L(P ) = 0

Algorithm GH92a (Input /Output : set X)
01. Repeat
02. Y ← set of pixels in X which are GHa-deletable
03. X ← X \ Y
04. Until Y = ∅
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Fig. 9. Masks for the Guo and Hall’s algorithms.

We say that P is GHb-deletable if the four following conditions hold:
i) D(P ) = 1
ii) G(P ) = 0
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iii) B(P ) > 2
iv) The neighborhood of P does not match any of the masks (1, 2, 3) in Fig. 9

We say that P is GHc-deletable if P is GHb-deletable or if the neighborhood
of P matches either of the masks (4, 5) in Fig. 9.

Algorithms GH92b and GH92c are similar to GH92a, just replacing “GHa-
deletable” by “GHb-deletable” or “GHc-deletable”, respectively.

Property 13. For any subset X of G2, the results of GH92a, GH92b and
GH92c after one step of execution are crucial retractions of X.

11 Jang and Chin 1992 [17]
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Fig. 10. Masks for the Jang and Chin’s JC92 algorithm. (1, 2, 3, 4, 5): thinning
masks (with all their π/2 rotations). (6, 7, 8, 9, 10, 11, 12): restoring masks (12
with all its π/2 rotations). For mask 3, at least one of the pixels A,B must be in X.

Algorithm JC92 (Input /Output : set X)
01. Repeat
02. Y ← set of pixels in X which match anyone of the thinning masks

but no restoring mask of Fig. 10
03. X ← X \ Y
04. Until Y = ∅

Remark 14. Algorithm JC92 does not preserve topology, as shown by the
following counter-example.

In the configuration of Fig. 11, it can be seen that the three pixels which form
a connected component may be deleted (the “corner” pixel matches mask 1,
the other two pixels match some rotations of mask 3, and none of these three
pixels match any restoring mask). Thus, this entire connected component is
deleted by the algorithm.
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Fig. 11. Counter-example for algorithm JC92.

12 Jang and Chin 1993 [18]
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Fig. 12. Masks for the Jang and Chin’s JC93 algorithm. (1, 2, 3, 4): thinning masks
(with all their π/2 rotations). (5, 6, 7, 8, 9, 10, 11): restoring masks. For mask 1, at
least one of the pixels A,B must be in X.

Let X ⊂ G2, let x ∈ X, let r ∈ N. We say that the ball B4(x, r) [see Sec. 4]
is maximal for X if B4(x, r) ⊆ X and if there is no other ball included in X
which contains B4(x, r).

The medial axis of X is the set of the centers of all the maximal balls for X.

Algorithm JC93 (Input /Output : set X)
00. A ← medial axis of X
01. Repeat
02. Y ← set of pixels in X which match anyone of the thinning masks

but no restoring mask of Fig. 12
03. Y ← Y \A
04. X ← X \ Y
05. Until Y = ∅

Property 15. For any subset X of G2, the result of JC93 after one step of
execution is a crucial retraction of X.

13 Eckhardt and Maderlechner 1993 [10]

A pixel in X having all its four strong neighbors in X is an interior pixel , a
pixel in X which is not interior is a boundary pixel . A boundary pixel which
has an interior pixel as strong neighbor is called an inner boundary pixel . A

14



pixel P in X is termed simple if it is a boundary pixel and if there exists
exactly one strong connected component of pixels of X in the neighborhood
of P which is strongly connected to P . An inner boundary pixel P is termed
perfect if there exists a strong neighbor Γi(P ) of P which is interior and such
that Γj(P ) /∈ X, with j = (i+ 4) mod 8.

Algorithm EM93 (Input /Output : set X)
01. Repeat
02. Y ← set of pixels in X which are both simple and perfect
03. X ← X \ Y
04. Until Y = ∅

Property 16. For any subset X of G2, the result of EM93 after one step of
execution is a crucial retraction of X.

14 Choy, Choy and Siu 1995 [9]
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Fig. 13. Masks for the Choy, Choy and Siu’s algorithm. (1, 2, 3): thinning masks
(with all their π/2 rotations). (4, 5, 6, 7, 8, 9, 10, 11, 12): restoring masks. For mask
3, at least one of the pixels A,B must be in X.

Algorithm CCS95 (Input /Output : set X)
01. Repeat
02. Y ← set of pixels in X which match anyone of the thinning masks

but no restoring mask of Fig. 13
03. X ← X \ Y
04. Until Y = ∅

Remark 17. Algorithm CCS95 does not preserve topology, as shown by the
following counter-example.

In the configuration of Fig. 14, each one of the three object pixels matches
some rotation of mask (1) or (3) (see Fig. 13), and it does not match any
restoring mask since any mask in this set has at least four object pixels. Thus,
this entire connected component is deleted by the algorithm.
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Fig. 14. Counter-example for algorithm CCS95.

15 Bernard and Manzanera, 1999 [2]
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Fig. 15. Masks for the Bernard and Manzanera’s algorithm. (1, 2): thinning masks
(with all their π/2 rotations). (3): restoring mask (with all its π/2 rotations).

Algorithm BM99 (Input /Output : set X)
01. Repeat
02. Y ← set of pixels in X which match anyone of the thinning masks

but no restoring mask of Fig. 15
03. X ← X \ Y
04. Until Y = ∅

Property 18. For any subset X of G2, the result of BM99 after one step of
execution is a crucial retraction of X.

16 Summary of results and discussion

To summarize, the algorithms proposed by T. Pavlidis in 1981 [27,28], by
R.T. Chin, H.K. Wan, D.L. Stover and R.D. Iverson in 1987 [8], by C.M. Holt,
A. Stewart, M. Clint and R.D. Perrott in 1987 [16], by R.W. Hall in 1989 [14],
by Z. Guo and R.W. Hall in 1992 [13] (3 variants), by B.K. Jang and R.T. Chin
in 1993 [18], by U. Eckhardt and G. Maderlechner in 1993 [10], and by
T. Bernard and A. Manzanera in 1999 [2] all produce a crucial retraction
after a single step of execution. Consequently, they all “preserve topology”.

On the other hand, the algorithms proposed by D. Rutovitz in 1966 [31], by
Y.Y. Zhang and P.S.P. Wang in 1988 [33], by R.Y. Wu and W.H. Tsai in
1992 [32], by B.K. Jang and R.T. Chin in 1992 [17], and by S.S.O. Choy,
C.S.T. Choy and W.C. Siu in 1995 [9] may produce a result which has not the
same topology as the input.

Fig. 16 shows the results of some of these algorithms on a simple shape.
To make a more detailed comparison, we consider also two other shapes (see
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Fig. 17). In particular, we mention the number of pixels, as well as the number
of medial axis pixels (see Sec. 12) in the skeletons.

First, notice that some of these algorithms are clearly not aimed at containing
all medial axis pixels. It is the case of [Chin, Wan et al. 1987], [Holt et al.
1987], [Hall 1989] and [Guo and Hall 1992] which are not symmetrical and
thus produce thinner skeletons than symmetrical algorithms. Nevertheless, it
is interesting to observe that the three last algorithms preserve many more
medial axis pixels than the first one.

The algorithm [Pavlidis 1981] is the “reconstructing” variant proposed in [27,28].
We can see that it indeed preserves all medial axis pixels for shapes (1,2) but
not for shape (3) (see also Sec. 4). Nevertheless, very few medial axis pixels
are missing.

The algorithm [Eckhardt and Maderlechner 1993] does also preserve almost
all medial axis pixels in these three shapes.

The algorithm [Jang and Chin 1993] does preserve the medial axis in all cases.
This is not a surprise since, in this algorithm, the medial axis is computed
beforehand and used as a constraint set during the thinning.

Some variants of [Bernard and Manzanera 1999] are studied in [26], with
respect to certain metrical properties. In particular, the role of mask (2) of
Fig. 15 is to eliminate “corner” configurations, with the aim of enhancing
rotation invariance. Indeed with this set of masks, 8-balls and 4-balls, as well
as a more general class of balls called fuzzy balls in [26], are reduced to one
pixel by the thinning algorithm. It may be seen that the algorithm using
only masks (1) and (3) is precisely the algorithm [Eckhardt and Maderlechner
1993], as noted in [26].
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(a) (b)
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(g) (h)

Fig. 16. (a): Pavlidis 1981. (b): Chin, Wan et al. 1987. (c): Holt et al. 1987. (d): Hall
1989. (e): Guo and Hall (3) 1992. (f): Jang and Chin 1993. (g): Eckhardt and
Maderlechner 1993. (h): Bernard and Manzanera 1999. The results of Guo and Hall
(1,2) on this shape are visually very close to (e) and are thus not displayed here.
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Fig. 17. Three shapes for the comparison of thinning algorithms.

Algorithm Sym. N1 A1 N2 A2 N3 A3

Medial axis (reference) Yes 564 1359 2178

Pavlidis 1981 Yes 847 564 2829 1359 4241 2172

Chin et al. 1987 No 544 153 1572 334 3057 778

Holt et al. 1987 No 590 466 1713 1079 2780 1444

Hall 1989 No 591 467 1773 1103 3060 1557

Guo, Hall 1992 (a) Yes 658 484 1993 1122 3508 1903

Guo, Hall 1992 (b) No 591 468 1775 1104 3264 1863

Guo, Hall 1992 (c) No 560 437 1664 993 3149 1750

Jang, Chin 1993 No 704 564 2394 1359 3787 2178

Eckhardt, Maderlechner 1993 Yes 724 564 2434 1359 3895 2171

Bernard, Manzanera 1999 Yes 678 534 1929 1219 3528 2018

Fig. 18. Comparison of thinning algorithms. The column “Sym.” indicates the sym-
metrical algorithms. Ni: number of pixels in the skeleton. Ai: number of pixels of
the skeleton which belong to the medial axis. The index i refers to the shape number
in Fig. 17.
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