
55:148 Digital Image Processing 
Chapter 11  
3D Vision, Geometry 
 
Topics: 

Basics of projective geometry 
Points and hyperplanes in projective space 
Homography 
Estimating homography from point correspondence 

The single perspective camera 
An overview of single camera calibration 
Calibration of one camera from the known scene 

Two cameras, stereopsis 
The geometry of two cameras. The fundamental matrix 
Relative motion of the camera; the essential matrix 
Estimation of a fundamental matrix from image point correspondences 
Applications of the epipolar geometry in vision 

Three and more cameras 
Stereo correspondence algorithms 

Green = To be discussed today 



Kronecker product 
 
In mathematics, the Kronecker product, denoted by “⨂”, is an operation on two matrices of 
arbitrary size resulting in a block matrix. The Kronecker product should NOT be confused with 
the usual matrix multiplication, which is an entirely different operation.  
 
If 𝐴 is an 𝑚-by-𝑛 matrix and 𝐵 is a 𝑝-by-𝑞 matrix, then the Kronecker product 𝐴⨂𝐵 is the 𝑚𝑝-
by-𝑛𝑞 block matrix 
 
Example 
 
 

1 2
3 4

⨂
0 5
6 7

=

1 ∙ 0 1 ∙ 5
1 ∙ 6 1 ∙ 7

2 ∙ 0 2 ∙ 5
2 ∙ 6 2 ∙ 7

3 ∙ 0 3 ∙ 5
3 ∙ 6 3 ∙ 7

4 ∙ 0 4 ∙ 5
4 ∙ 6 4 ∙ 7

=

0 5
6 7

0 10
12 14

0 15
18 21

0 20
24 28

 

 
We will use the following identity 
 

𝐴𝐵𝐜 = 𝐜T⨂𝐴 𝐛  |  𝑏 = 𝑏11 … 𝑏𝑝1 𝑏12 … 𝑏𝑞𝑝
T 



Linear estimation 
 
Why linear estimation? 
 
Cost function for maximum likelihood estimation  
 

min
𝐡,𝑢𝑖,𝑣𝑖

 

𝑢𝑖 − 𝑢 𝑖
2 + 𝑣𝑖 − 𝑣 𝑖

2 +
11𝑢𝑖 + 12𝑣𝑖 + 13

31𝑢𝑖 + 32𝑣𝑖 + 33
− 𝑢 𝑖

′

2

+

21𝑢𝑖 + 22𝑣𝑖 + 23

31𝑢𝑖 + 32𝑣𝑖 + 33
− 𝑣 𝑖

′

2

𝑚

𝑖=1

 

 
 
 
Maximum likelihood estimation: non convex cost function → multiple optimal solutions (local 
optimal problem) → a need for initial estimation of the matrix 𝐻 
 
Linear estimation approach is used to solve the initialization problem 
 
 



Linear estimation 
 
Principle: minimize the sum of algebraic distance between the estimated (transformed from 
first projection) and actual points in the second position 
 
Advantage: canonical solution, i.e., no optimization search algorithm  is needed → unique 
optimum 
 
Method:  
• Start with the equation 𝛼𝐮′ = 𝐻𝐮 
• Eliminate the term 𝛼 by multiplying with a matrix 𝑆 𝐮′  whose rows are orthogonal to 𝐮′ 

and det 𝑆 𝐮′ ≠ 0;    example: 𝑆 𝐮′ = 𝑆 𝑢′, 𝑣′, 𝑤′ =
0 −𝑤′ 𝑣′

𝑤′ 0 −𝑢′

−𝑣′ 𝑢′ 0

 

• Rearrange the equation 𝑆 𝐮′ 𝐻𝐮 = 𝟎 using the identity of Kronecker product identity 
𝑆 𝐮′ 𝐻𝐮 = 𝐮T⨂𝑆 𝐮′ 𝐡 = 𝟎 

 where 𝐡 = 11, 21, … , 𝑚23, 𝑚33   



Linear estimation Method 
 
• Combine 𝑚 correspondences into a single matrix form 

𝐮1
T⨂𝑆 𝐮1

′

𝐮2
T⨂𝑆 𝐮2

′

⋮
𝐮𝑚

T ⨂𝑆 𝐮𝑚
′

= 𝑊 𝐡 = 𝟎 

• In real application this equality does not hold good (why??); so, it boils down to a 
minimization of the term on the l.h.s., i.e., 𝑊𝐡  subject to 𝐡 = 1 

• Soln: Compute 𝑊𝑇𝑊 = 9 × 9 square matrix 
• Compute eigenvectors and eigenvalues of 𝑊𝑇𝑊 
• Find 𝐡 along the eigenvector associated with the smallest eigenvalue 

 
• Data preconditioning: 

• Use 𝐻pre and 𝐻pre
′  to pre the data points such mean and std of points on each project 

are 0 and 1, respectively 
 

• Finally, 𝐻 = 𝐻pre 𝐻  𝐻pre
′−1 

 



11.3 A single projection camera 
11.3.1 Camera model 
• Different coordinate system 
• Transformation between every two coordinate systems 
 
Homogeneous coordinates  
• Image points:  𝑢, 𝑣, 𝑤 T 
• 3D scene points:  𝑋, 𝑌, 𝑍, 𝑊 T 
 
In a homogeneous coordinate, the last element 𝑤 or W is used to indicate the ‘𝛼’ parameter 
of Eq. 11.1. Thus a homogeneous coordinate represents a ray. 
All points with 𝑤 = 1 lie on the image plane. 
Thus, by performing all transformations on homogeneous coordinates, we do not only 
transform a set of points onto another set of points; rather, a set of rays is transformed onto 
another set of rays.   



Camera model 
 
Important parameters 
• Image plane 
• Optical axis 
• Focal point/optical 

center/center of 
projection 

 
Different coordinate 
systems 
• World/scene coordinate 

system 
• Camera coordinate 

system 
• Image Euclidean 

coordinate system 
• Image affine coordinate 

system 
 



Transformations between 
different coordinate 
systems 
 
Scene → Camera 
 
Non-homogeneous 
coordinates 

𝐗𝑐 = 𝑅(𝐗 − 𝐭) 
 
Homogeneous coordinates 

𝐗𝑐 =
𝑅 −𝑅𝐭
𝟎T 1

𝐗 

 
𝑅 and 𝐭 are called extrinsic 
camera calibration 
parameters 



Camera→ Image Euclidean 
 
Non-homogeneous 
coordinates 

𝑢𝑖 =
𝑋𝑐𝑓

𝑍𝑐
,   𝑣𝑖 =

𝑌𝑐𝑓

𝑍𝑐
 

 
Homogeneous coordinates 

𝐮𝑖 ≅
𝑓
0
0

0
𝑓
0

0
0
1

0
0
0

𝐗𝑐 

 
Explain the relation 
between the above two 
equations 
 
Normalized image plane 
(𝑓 = 1) 
 

𝐮𝑖 ≅
1
0
0

0
1
0

0
0
1

0
0
0

𝐗𝑐 



Image Euclidean → Image 
affine 
 
Homogeneous coordinates 

𝐮 ≅ 𝐾𝐮𝑖

=
𝑘
0
0

𝑠
𝑔
0

−𝑢0

−𝑣0

1
𝐮𝑖 

 
Explain different 
parameters in the matrix 𝐾 
 
𝐾 is called the intrinsic 
calibration matrix 
 
Note that 𝐮 represents the 
image pixel coordinate 
system 



Scene → Image affine 
 
Homogeneous coordinates 
𝐮 ≅ 𝐾𝐮𝑖

= 𝐾
1
0
0

0
1
0

0
0
1

0
0
0

𝐗𝑐

= 𝐾
1
0
0

0
1
0

0
0
1

0
0
0

𝑅 −𝑅𝐭
𝟎T 1

𝐗

= 𝑀𝐗 
 
 
𝑀 (3 × 4 matrix) is called 
the projection matrix 



Projection and back projection 
 
Here, homogeneous coordinates are used 

𝐮 ≅ 𝑀𝐗 
 
To compute the inverse map we need to compute the inverse of 𝑀 
But 𝑀 is not a square matrix! 
How to solve it? 

Use pseudo inverse 𝑀+ = 𝑀T 𝑀𝑀T −1
;   Property 𝑀𝑀+ = 𝐼 

 
Image → Scene transformation 

𝐗 = 𝑀+𝐮 
 
• Does it mean that we can uniquely map a 2D image point to a 3D scene point? 

   



Projection and back projection 
 
Here, homogeneous coordinates are used 

𝐮 ≅ 𝑀𝐗 
 
To compute the inverse map we need to compute the inverse of 𝑀 
But 𝑀 is not a square matrix! 
How to solve it? 

Use pseudo inverse 𝑀+ = 𝑀T 𝑀𝑀T −1
;   Property 𝑀𝑀+ = 𝐼 

 
Image → Scene transformation 

𝐗 = 𝑀+𝐮 
 
• Does it mean that we can uniquely map a 2D image point to a 3D scene point? 

  NO! 
• Note that we are using homogeneous coordinate which represent a ray and not 

a point 
• So the above equation maps a ray from the image affine coordinate system to 

scene coordinate system 
• Here is the beauty of homogenous coordinate system; it does not solve the 

ambiguity but provide a compact mathematical representation in the presence 
of ambiguity 



Back projection of an image line 
 
Given: an image line 𝐥 
Note that, in homogeneous coordinates, a image line 𝐥 represents a plane, say 𝐚 
 
A scene point 𝐗 on the plane 𝐚 satisfies 𝐚T𝐗 = 0 
 
Now, the projection of 𝐗, say 𝐮 = 𝑀𝐗, must lie on the line 𝐥 
 
Thus, 

𝐥T𝐮 = 𝐥T𝑀𝐗 = 0 ⇒  𝐚 = 𝐥T𝑀
T

= 𝑀T𝐥 

 
The plane contains the optical center, i.e, 𝐚T𝐂 = 0. 



11.3.3 Camera calibration from a known scene 
 
We want to derive the projection matrix 𝑀 that consists of both extrinsic camera 
calibration parameters (what are those?) and the intrinsic calibration matrix (again, 
what is that?) 
 
Given: a set of image-scene point correspondences 𝐮𝑖 , 𝐗𝑖 𝑖=1

𝑚  
 
Output: the projection matrix 𝑀 
 
It sounds like we have solved a similar problem before!! 
 
 



11.3.3 Camera calibration from a known scene 
 
We want to derive the projection matrix 𝑀 that consists of both extrinsic camera 
calibration parameters (what are those?) and the intrinsic calibration matrix (again, 
what is that?) 
 
Given: a set of image-scene point correspondences 𝐮𝑖 , 𝐗𝑖 𝑖=1

𝑚  
 
Output: the projection matrix 𝑀 
 
It sounds like we have solved a similar problem before!! 
Remember the process of homography estimation 
 
What is the comparison? 
 



11.3.3 Camera calibration from a known scene 
 
We want to derive the projection matrix 𝑀 that consists of both extrinsic camera 
calibration parameters (what are those?) and the intrinsic calibration matrix (again, 
what is that?) 
 
Given: a set of image-scene point correspondences 𝐮𝑖 , 𝐗𝑖 𝑖=1

𝑚  
 
Output: the projection matrix 𝑀 
 
It sounds like we have solved a similar problem before!! 
Remember the process of homography estimation 
 
What is the comparison? 
In homography estimation we solved a 3 × 3 matrix 𝐻 using a 𝒫2 → 𝒫2 
correspondence 
Here we have to solve a 3 × 4 matrix 𝑀 using a 𝒫2 → ℜ3 correspondence 
 
Remember that we are using homogeneous coordinates 
 
Steps? 



11.3.3 Camera calibration from a known scene 
 
We want to derive the projection matrix 𝑀 that consists of both extrinsic camera 
calibration parameters (what are those?) and the intrinsic calibration matrix (again, 
what is that?) 
 
Given: a set of image-scene point correspondences 𝐮𝑖 , 𝐗𝑖 𝑖=1

𝑚  
 
Output: the projection matrix 𝑀 
 
It sounds like we have solved a similar problem before!! 
Remember the process of homography estimation 
 
What is the comparison? 
In homography estimation we solved a 3 × 3 matrix 𝐻 using a 𝒫2 → 𝒫2 
correspondence 
Here we have to solve a 3 × 4 matrix 𝑀 using a 𝒫2 → ℜ3 correspondence 
 
Remember that we are using homogeneous coordinates 
 
Steps? 
Initialization using linear estimation 
Optimization using maximum likelihood estimation 



11.3.3 Camera calibration from a known scene 
 
We want to derive the projection matrix 𝑀 that consists of both extrinsic camera 
calibration parameters (what are those?) and the intrinsic calibration matrix (again, 
what is that?) 
 
Given: a set of image-scene point correspondences 𝐮𝑖 , 𝐗𝑖 𝑖=1

𝑚  
 
Output: the projection matrix 𝑀 
 
It sounds like we have solved a similar problem before!! 
Remember the process of homography estimation 
 
What is the comparison? 
In homography estimation we solved a 3 × 3 matrix 𝐻 using a 𝒫2 → 𝒫2 
correspondence 
Here we have to solve a 3 × 4 matrix 𝑀 using a 𝒫2 → ℜ3 correspondence 
 
Remember that we are using homogeneous coordinates 
 
Steps? 
Step 1 Initialization using linear estimation 
Step 2 Optimization using maximum likelihood estimation 



Step 1 Initialization using linear estimation 
 
We want to derive the projection matrix 𝑀 that consists of both extrinsic camera 
calibration parameters (what are those?) and the intrinsic calibration matrix (again, 
what is that?) 
 
• Multiply the equation 𝐮 = 𝑀𝐗 by 𝑆 𝐮  to get 𝟎 = 𝑆 𝐮 𝑀𝐗  (Remember how 

𝑆 𝐮  is formed?) 
• Rearrange the expression 𝑆 𝐮 𝑀𝐗 to get 𝐗T⨂𝑆 𝐮 𝐦 = 𝟎 where 𝐦 =

𝑚11, 𝑚21, … , 𝑚24, 𝑚34  
• Integrate all 𝑚 correspondences into a single system of linear equation 
 

𝐗1
T⨂𝑆 𝐮1

𝐗2
T⨂𝑆 𝐮2

⋮
𝐗𝑚

T ⨂𝑆 𝐮𝑚

= 𝑊 𝐦 = 𝑊𝐦 = 𝟎 

• Compute eigenvectors and eigenvalues of 𝑊𝑇𝑊 
• Find 𝐦 along the eigenvector associated with the smallest eigenvalue subject to 

𝐦 = 1 
 
 



Step 2 Maximum Likelihood Estimation 
 
Cost function : 
 

min
𝐦,𝑋𝑖,𝑌𝑖,𝑍𝑖

 𝑋𝑖 − 𝑋 𝑖
2

+ 𝑌𝑖 − 𝑌 𝑖
2

+ 𝑍𝑖 − 𝑍 𝑖
2

+ 𝑃𝑟𝑜𝑗𝑢(𝐦, 𝐗)  − 𝑢 𝑖
2 + 𝑃𝑟𝑜𝑗𝑣(𝐦, 𝐗)  − 𝑣 𝑖

2

𝑚

𝑖=1

 

 
 
 
 
 


