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Abstract

Using plane wave spectrum methods, we analyze the propagation and mutual conversion

of plane and evanescent waves generated by a one-dimensional object partially obscured by a

vibrating knife-edge.  We show that sub-wavelength details of the object may be detected in each

part of the transmitted plane wave spectrum, upon scanning the knife edge across the object.  We

discuss the implications for near-field scanning optical microscopy (NSOM) and compare some

aspects of conventional NSOM (physical aperture), and vibrating knife edge (electronic aperture)

approaches to the sampling of optical fields.
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I. Introduction

In previous papers [1-4] we have discussed the one- and two-dimensional operation of an

optical microscope that uses a vibrating knife edge.  In these papers, the analysis is simplified by

assuming that all light power passing both the specimen and an opaque knife edge is detectable.

In practical situations this is not realizable, since evanescent waves do not propagate away from

the specimen, and therefore are not directly detectable.
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High spatial frequency details (spatial frequencies greater than 1/λ, for light that is incident

perpendicular to the subject) in the specimen cause evanescent waves to be created.  Because this

information does not propagate through free space, small spatial details cannot be imaged by

conventional microscopes, where the image is formed by propagating the light through a series of

lenses.  For this reason conventional microscopes cannot increase their resolution much past a

spatial frequency of 1/λ.  (The absolute limit is 2/λ for grazing incident illumination.)

In the last decade, several schemes for detecting evanescent waves were introduced [5, 6,

7].  They all use a sub-wavelength-sized pinhole aperture that samples the field very close (less

than λ) to the specimen.  By positioning the aperture in this manner, the evanescent waves are

converted into propagating waves, which may then be detected.  The aperture is raster-scanned

across the specimen surface to create a two-dimensional image of the specimen on a computer.

In our technique, we use a vibrating knife-edge or knife edge corner to scatter and/or

convert the field perturbed by the specimen, after which it is collected by conventional lenses.  In

this paper we calculate the power in the collected light, and analyze in detail how spatial

information is retrieved from the scattered and converted waves.  This is done using plane wave

spectrum methods [8,9].

Our paper is organized as follows: in section 2, the propagation of waves scattered by an

object is analyzed, with and without a knife edge inserted.  In section 3, the results of section 2

are analyzed using graphical methods.  In section 4, we compare some aspects of the pinhole

aperture and vibrating knife edge method of sampling evanescent fields.  In section 5, we state

conclusions and propose future research.

II. Theory

The subsequent analysis is limited to the one-dimensional case for simplicity.  Time-

dependence will be assumed to be exp(jωt), so that a +Z propagating plane wave of

monochromatic light is written in phasor notation as Eo exp(-jkz), where k=2π/λ.



3

A. Evanescent wave generation by an object

The configuration to be analyzed is as follows.  Plane waves of light, propagating in the

+Z-direction are incident on an amplitude grating t(x) at z=0.  The (phasor) field before the grating

will be defined for convenience as a real constant

E-(x,0) = Eo e-jk0 = Eo (1)

The amplitude transmittance of the (constant phase) amplitude grating is chosen as

t(x) = 1 + m cos(Kxx) (2)

where m is the amplitude modulation index of the grating and Kx the wavenumber of the grating

(= 2π/Λ, Λ is the grating period).  A sinusoidal grating is chosen since an arbitrary object may be

Fourier-decomposed into a summation of sine and cosine gratings.  In a realizable grating t(x) <

1, but we ignore this aspect here for notational convenience.

The field after the grating, at z=0+, is given by

Eo+(x) = Eo[1+ m cos(Kxx)] (3)

The (1-dimensional) plane wave spectrum of the field at z=0+ is calculated as the inverse Fourier

transform of Eo+(x) [8]:

Ao+(kx) = ∫
-∞

+∞
  {Eo+(x)} exp(jkxx) dx (4a)

= Eo [ δ(kx) + 
m
2  δ(kx - Kx) + 

m
2  δ(kx + Kx)] (4b)

which represents the sum of three plane waves, propagating in different directions.

Now, the wave propagator for free space, which describes how the plane waves are

propagated, [9] is given as

Hz = exp(-jkzz) (5)
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where kz2 = k2 - kx2 - ky2.  For our case (ky = 0), we substitute kz = k 1 -  kx2  to obtain

Hz = exp ( )-jz k2 -  k x2 (6)

Which results in the plane wave spectrum at the plane z

Az(kx) = Eo[ δ(kx) + 
m
2  δ(kx - Kx) + 

m
2  δ(kx + Kx)] x  exp(-jz k2 -  k x2 ) (7)

Taking the Fourier transform of eq. (7) yields the electric field at z:

Ez(x,z)  = ∫
-∞

∞
  Az(kx) exp(-jkxx) dkx

  = Eo exp(-jkz)

  + Eo 
m
2  exp(-jz k2 -  K 2 ) exp(-jKx)

  + Eo 
m
2  exp(-jz k2 -  K 2 ) exp(+jKx) (8)

It will be seen that for the case of Λ < λ, the second and third terms of eq.(8) are

evanescent waves propagating in the ±x directions with wavenumber Kx, and decaying

exponentially in amplitude in the z-direction (the exp(-jz k2 -  K 2 ) terms become real).

Traditional microscopes cannot see details smaller than the wavelength of light because they

cannot detect these evanescent, non-propagating waves.

B.  Evanescent-to-plane wave conversion by the knife edge

We now place a knife edge in the plane of the object (z=0) at x=xo.  The simple

assumption is made that the knife edge geometrically obscures the incoming plane waves of light

for x≤xo and transmits for x>xo.  We will show that, by varying the position of the knife edge in

the x-direction, spatial information about the grating may be ascertained, even if the grating period

is sub-wavelength.  To avoid infinite power problems in the calculations and more closely model

actual practice, the beam size at the grating is limited to a width L in the x-direction, and its

amplitude is assumed to be constant from -L/2 ≤ x ≤ L/2.
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As illustrated in Fig. 1, the amplitude grating transmittance of eq. (2), with the input beam

limits included becomes

t(x') = 1 + m cos[Kx (x'+d)]    if - a ≤ x' ≤ a

 = 0   otherwise (9)

1+m

1-m

1

xo x' L/2

x

0

Beam extent (L)

Knife-edge extent

-L/2

t(x) x beam x knife-edge

a a

 d

Figure 1.  Knife-edge limited sinusoidal amplitude grating

where, for mathematical convenience, we have introduced the variables

a = 
L
4 - 

xo
2

d = 
xo
2  + 

L
4   and

x' = x - 
xo+L/2

2   = x - d (10)

We wish to calculate the plane wave spectrum of the knife-edge truncated field and analyze

how this depends on the knife edge position and the grating parameters.  The plane wave

spectrum is proportional to the Fraunhofer diffraction pattern, or the field seen at the back focal
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plane of a lens, with the grating/knife edge at the front focal plane.  Because the propagating plane

waves will be detected by a photodetector, which converts intensity (power) into electrical

signals, the final results will be given in intensities.

The plane wave spectrum of the field at z=0+ is given by

A(kx') = ∫
-a

a
 Eo (1+m cos[Kx (x'+d)]) exp(jkx'x') dx' (11)

Eq. (11) is readily evaluated:

A(kx') = Eoa 



 2  

sin(kx'a)
kx'a

+ m exp(jKx d)  
sin[(Kx +  k x')a]

(Kx +  k x')a





+ m exp(-jKxd) 
sin[(Kx -  k x')a]

(Kx -  k x')a
 (12)

This may be interpreted as three delta functions in the plane wave spectrum, centered at kx' = 0,

+Kx and -Kx, and convolved with sin(kx'a)/kx'a = sinc(kx'a/π).  To visualize eq. (12), it was

entered into the mathematical analysis package Maple V on a Macintosh II computer.  This

program allows the user to plot an equation as a function of one or two variables.  The amplitude

of the plane wave spectrum, for the case of Kx = 2π/Λ = 0.5x106 and m = 0.5, a=10Λ,

d=n(2π/Kx) (n is an integer) is shown in figure 2.

The relative intensity of light in the plane wave spectrum, is found by multiplying eq.(12)

with its complex conjugate:
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Figure 4.  Normalized plane wave spectrum showing sinc functions caused by finite-
sized illumination, convolved with shifted delta functions caused by grating

I(kx',xo) ∝ Eo2 

 4
kx'2

 sin2(kx'a)  + 
m2 sin2((Kx+kx')a)

(Kx+kx')2  +  
m2 sin2((Kx-kx')a)

(Kx-kx')2

+ 
4m sin(kx'a) cos(Kxd)

kx'
 




 

sin((Kx+kx')a)
(Kx+kx')

 +  
sin((Kx-kx')a)

(Kx-kx')
 


+  

2m2 sin((Kx+kx')a) sin((Kx-kx')a) cos(2Kxd)
(Kx+kx')(Kx-kx')

  (13)

It should be noted that eqs.(10-12) represent the plane wave spectrum with respect to the

variable x'.  Equation 13, however, is identical for kx' or kx.  This can be easily explained as

follows:  E(x') = E(x) * δ(x-d), (where * denotes convolution), and convolution in the spatial

domain transforms into a multiplication in the plane wave spectrum. The inverse Fourier

transform of a shifted delta function is a complex exponential, and when finding the intensity of
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the plane wave spectrum, one multiplies A(kx) by its complex conjugate, which will result in this

complex phase term becoming unity.

III. Numerical Analysis

In order to understand the implications of eq. (13), it is plotted in this section using Maple

V for various parameter values.  Unless stated otherwise, each plot varies the position of the knife

edge over the extent of the beam, i.e. -L/2 < xo < L/2, along one graph axis, and uses λ = 0.628

µm.  When the intensity is also shown as a function of kx (3-d plots), values are plotted from kx =

0 to 2π/λ, showing all of the propagating plane waves (the total power in which could be collected

with a N.A. = 1 lens).  In showing intensities, positive and negative kx yield identical results, so

only positive ones are shown.

A. Effect of knife edge position on plane wave spectra of gratings

The first case we analyze is that of a 1.57 µm period (Λ=2.5λ) sinusoidal grating, with

modulation index m=1, illuminated by a 15 µm wide beam.  According to eq. (13), the spectrum

should consist of the squared Fourier transform of the aperture (sinc2, where sinc(x) =

sin(πx)/πx), convolved with delta functions at kx = 0 and ±2π/Λ.

Figure 3 depicts this plane wave spectrum.  As may be expected, as the knife edge

obscures more of the illuminating beam, the spectrum intensity decreases.  The important point to

note though is that as the knife edge is moved, the entire spectrum carries the spatial details of the

grating.  This is apparent in figure 3 as the xo-dependent wavy structure superimposed on the plane

wave spectrum, even at kx=0 along the crests of the plot.  This last point is very important, since it

implies that even if a very low numerical aperture system is used to collect the plane waves, the

grating information can still be recovered.  The specifics of this recovery will be discussed later.
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   Figure 3.  Propagating plane wave spectrum intensity graph of Eq. (13)

    for 1.57-µ grating

Figure 4 shows a similar plane wave spectrum but for a 0.314 µm period (Λ=λ/2) grating

with a modulation index of 1, illuminated by a 3 µm wide beam.  Note that although an evanescent

wave pattern with amplitude 1/2 exists at + 2x10-7, similar to the half amplitude crest at 4x10-6 in

Fig. 3, it is not shown in this figure which excludes evanescent waves.
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0.314µm grating
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Figure 4.  Propagating plane wave spectrum intensity graph of Eq.

(13) for 0.314-µm grating

Figure 5 depicts the optical power in the spectrum of figure 4 as a function of xo.  This is

defined as the integral of I(kx,xo) over kx = 0..2π/λ which is equivalent to the total power available

for detection with a N.A.= 1 system.  Note that there are approximately 10 sinusoidal variations as

xo varies from -1.5 to 1.5 µm, which corresponds to the distance the knife edge moved (L=3 µm),

divided by the grating period (Λ=0.314 µm).  When the knife edge moves through a section of the

grating that is not transmissive (for example at xo=0.157 µm), the x-dependent optical power is

constant (i.e. dI/dxo=0).  This is intuitively satisfying since when the edge is at a point where the
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grating completely blocks all light, moving the knife edge in either direction should not change the

power in the plane waves.
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Figure 5.  Propagating optical power of plane wave spectrum intensity for 0.314 µm

grating

B. Retrieval of object transmittance

In previous papers [1, 2] it was reasoned that for small displacements of the knife edge, the

reduction in transmitted light power should be linearly proportional to the knife edge movement.

The proportionality constant is dependent on the intensity transmission characteristics of the

specimen and the beam power at the knife-edge.  Specifically,

dP
dxo

 ∝ |t(xo)|2 (15)

Equation (15) implies that to retrieve the intensity transmittance of the specimen from the

photodetector, one should take the derivative of total power (including evanescent power) with
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respect to xo.  Taking d/dxo of figure 5 (propagating power only) results in figure 6.  It is evident

from this graph that this reveals the grating structure with much increased contrast.  The results for

a 0.0314 µm grating (λ/20), with m=1 and L=3 µm are given in figure 7.
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Figure 6. Derivative of 0.314 µm grating propagating power with respect to xo



13

-8e-08 -6e-08 -4e-08 -2e-08 0 2e-08 4e-08 6e-08 8e-08

-6

-5

-4

-3

-2

-1

0

Figure 7. Derivative of 0.0314 µm grating propagating power with respect to xo

If the knife-edge is vibrated in the x-direction about the point xo, with peak-to-peak

amplitude ∆x, the time-modulated power at the photodetector would have a peak-to-peak variation

of ∆x.dP/dxo.  This is proportional to the peak-to-peak AC electrical signal at the output of a

photodetector.  By scanning the entire object under the vibrating knife edge, an image of t(x) may

be reconstructed.  Scanning the object past the knife-edge would be preferential to moving the

knife-edge past the object, since the latter changes the effective beam width, and hence the

propagating (detected) optical power.
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IV. Comparison of knife edge and physical apertures

It is instructive to compare the operation of the knife edge electronic aperture with the

physical slit aperture.  For this comparison, the metal (knife edge, physical aperture) is assumed to

be infinitely conducting and thin.  All of the propagating waves (i.e. all kx = -2π/λ .. 2π/λ) created

by either aperture are assumed to be collected.

Figure 8 illustrates the propagating power as a function of knife edge position for a

constant transmissive object (m=0), illuminated by a 3 µm wide beam.  The total detected power

decreases linearly as xo increases (i.e. the slit width decreases) for most of the plot.  This is what

one might expect, since as the effective beam (slit) width decreases, more of the beam is

geometrically obscured, and thus less light is available in the plane wave spectrum.  For large slit

widths, the lost evanescent power created by the slit is negligible compared to the propagating

power.  As the slit becomes very narrow (<λ/2), this is no longer the case because the narrow slit

starts generating significant evanescent waves.  The total detected power now decreases

quadratically with the slit width, as illustrated in figure 9 (blowup of figure 8 near the point

xo=L/2).  This result should be compared to that found in [5] which states a width4 dependence on

output power for small 2-dimensional apertures.
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Figure 8. Propagating power for a constant transmissive object

As previously stated, multiplying the x-derivative by ∆x yields the peak-to-peak power

variation detectable at a photodetector, i.e. the peak-to-peak signal is dP(xo)/dxo . ∆x.  As an

example, choosing xo=0, and ∆x=1 µm would give an output of approximately 3.2  . 1x10-6 =

3.2x10-6, where dP(0)/dxo is numerically determined from figure 8 at xo=0.  This is the same

signal as would be achieved with a 1 µm wide physical aperture (figure 8-marked with a '+') and
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the entire incident light modulated by a "sinusoidal" chopper.  Thus, for large sampling apertures,

the vibrating knife edge sampler offers no signal improvement over the physical aperture sampler.

However, for small (<λ/2) apertures, the knife edge aperture appears to offer a significant

improvement in received signal.  This may be seen by looking at, for example, a 0.05 µm wide

aperture.  The physical slit's propagating power is ~2.5x10-8 ('+' in figure 9).  For the knife edge

created aperture at xo=0, the detectable signal is 3.2x0.05x10 -6 = 1.6x10-7, or 6.4 times larger

than the physical slit's.  Decreasing the aperture size further increases the advantage of using a

knife-edge aperture over a physical aperture.  This advantage arises from the fact that the small

knife edge-created aperture is able to utilize much more of the information originating from the

sampling point, whereas the physical aperture causes most of the information to be converted and

lost as evanescent waves.
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Figure 9. Propagating power for a constant transmissive object (sub-wavelength 

aperture)

Mathematically, the advantage of the slit aperture may be shown as follows.  Consider a

one-dimensional slit with width 2a.  The slit is illuminated by plane waves with amplitude Eo.  The

plane wave spectrum of the passed light is readily calculated as Eo.2a.sinc(kx.a/π).  Again, we

assume that plane waves with wavenumber less than 2π/λ are detectable.  The optical power is

calculated as
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P = Eo2 (2a)2. 1
2π ∫

-2π/λ

2π/λ
 sinc2(kx.a/π) dkx (16)

For 2a << λ, i.e. for very narrow slit widths, eq. 16 becomes approximately

P ~ Eo2 .  (2a)2.2/λ (17)

and for 2a >> λ, eq. 16 becomes approximately

P ~ Eo2 (2a)2 
1
2a = Eo2.2a (18)

One-dimensional NSOMs, having narrow physical apertures, will yield a signal given by

eq. 17.  We previously found that to retrieve the object information with the vibrating knife edge,

one needs to take the spatial derivative of the optical power, multiplied by the peak-to-peak

vibration extent (∆x).  It is assumed that the illumination extent is larger than λ, i.e. eq. 18 holds.

The ratio of the signal found from the two methods is therefore


Signalvibrating knife edge

 Signalphysical aperture
 

1-D

  = 
Eo2 ∆x

Eo2.(∆x)2.2/λ
  = 

λ
2∆x (19)

where for comparison of similar sized samplers, 2a = ∆x for the physical aperture.

As an example, for the case of 0.05 µm samplers, with λ = 0.628 µm, the improvement in

signal from the vibrating knife edge sampler over the physical aperture is (0.628 / 2.0.05) = 6.28.

This may be compared to the value 6.4 found from the Maple plots.

V. Conclusion

In this paper, it was shown that a vibrating knife edge can be used to sample optical fields,

even if they contain sub-wavelength spatial information.  In addition, this type of field sampler

was found to be more efficient as regards signals received, than the physical apertures such as

pipettes used by others [5-7] for small sampling apertures, with the advantage becoming more
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pronounced as the aperture size is decreased.  However, it should be noted that this does not

necessarily imply that the signal to noise ratio is better.  To answer that question more should be

known about the system (e.g. if it is limited by shot noise, Johnson noise or laser fluctuations).

Such an analysis is outside the scope of our paper.
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