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6. WAVE EQUATIONS AND WAVES

MAXWELL'S EQUATIONS
HELMHOLTZ EQUATION
SCALAR FIELDS
COMPLEX ENVELOPE EQUATION
COMPLEX PROFILE EQUATION
COMPLEX ENVELOPE/PROFILE EQUATION
PLANE WAVE
PARAXIAL APPROXIMATION
EVANESCENT WAVE
WAVE FRONTS
SPHERICAL WAVE
CYLINDRICAL WAVE
CIRCULAR GAUSSIAN BEAM
ELLIPTICAL GAUSSIAN BEAM

   Ex. 6.1  6.2  6.3  6.4

MAXWELL'S EQUATIONS

An optical field propagating in a homogeneous, isotropic, linear
medium, devoid of free charges and curents,  must satisfy the
following Maxwell's equations:

 × e  = - 
∂b
∂t (6.1)

 × b  =   
1
c2 

∂e
∂t (6.2)

 . e = 0 (6.3)

 . b = 0 (6.4)

where the vectors e and b are the electric and magnetic field
quantities, and c is the light velocity in the medium. In terms of the
velocity cv of light in vacuum

c = cv/n, (6.5)
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where n is the refractive index of the (nonmagnetic) medium:

n = εr

and εr  the relative dielectric constant

Taking the curl of (6.1) and substituting (6.2) into the result we find

 ×  × e  =  (  . e) - ∇2 e = -  
1
c2 

∂2e
∂t2 (6.6)

With (6.3) we then find

 ∇2  e =   
1
c2 

∂2e
∂t2  (6.7)

with an identical equation for the magnetic field:

∇2 b =   
1
c2 

∂2b
∂t2 (6.8)

Eqs (6.6) and (6.7) are vector wave equations. Similar (scalar)
equations must be obeyed by each component of e and b.

HELMHOLTZ EQUATION

If the field is  monochromatic at frequency ω, e and b are
represented by the phasors A and B :

e = Re {Aexp(-jωt)}

b = Re{ Bexp(-jωt)}

Maxwell's equations for free space then become

 × E  =   j ωB (6.9)

 × B  =  
-1
c2  jωE (6.10)
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 . E = 0 (6.11)

 . B = 0 (6.12)

frequency ω.

Taking the curl (  × ) of (6.1),  using the relation

 ×  × E =  (  .E) −   ∇2E

 and substituting into (6.2) we find the well known Helmholtz
equation :

∇2E +  k 2E =  0 (6.13)

where the propagation constant k is given by

k = ω/c = 2π/λ (6.14)

and λ is the wave length in the medium.

SCALAR FIELDS

In this book we will mostly use scalar wave propagation as a model,
with the field propagating nominally in the Z direction and E
representing a single component in the XZ plane. Eq. (6.6) will then
be written as the scalar equation :

∇2E + k2E = 0 (6.15)

All the following equations in this section will be written as scalar
equations.

COMPLEX ENVELOPE EQUATION

In this case e and b are defined as slowly time - varying phasors:

e = Re {E(x,y,z,t)exp(-jωt)} (6.16)
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b = Re{ B(x,y,z,t)exp(-jωt)} (6.17)

where it is assumed that the time variation of A(t) and B(t) is slow
compared to ω.  Such slowly time-varying phasors are called
complex envelopes in communication theory [Ref. 1] Substituting
(6.16) into the scalar version of (6.7) we obtain:

∇2E = 
1
c2 

∂2E
∂t2  -

2jω
c2  

∂E
∂t  - k2E (6.18)

Assuming that |
∂2E
∂t2 | << ω |

∂E
∂t | (6.19)

we may write (6.18)  as the complex envelope equation :

∇2E  +  
2jω
c2  

∂E
∂t  +  k 2E = 0 (6.20)

COMPLEX PROFILE EQUATION

Often we assume that the field propagates nominally in the Z
direction:

E(x,y,z,t) = Ee(x,y,z)exp(jkz) (6.21)

where the variation  of the complex profile  Ee with z is slow
compared to k.

In that case

 
∂2E
∂z2 = {

∂2Ee
∂z2  + 2jk

∂Ee
∂z  -k2Ee}exp(jkz) (6.22)

may be written as

 
∂2E
∂z2 =(2jk

∂Ee
∂z  -k2Ee)exp(jkz) (6.23)

if we assume that
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 |
∂2E
∂z2| << k |

∂Ee
∂z | (6.24)

Substituting (6.23) into (6.15) we find the  complex profile equation:

∂2Ee
∂x2  +  

∂2Ee
∂y2  +  2 jk

∂Ee
∂z   =  0 (6.25)

COMPLEX ENVELOPE/PROFILE EQUATION

Assuming that Ee = Ee (x,y,z,t) is also slowly time varying, it is
readily seen that we may "combine"  (6.20) and (6.25) to obtain the
complex envelope/profile equation. :

∂2Ee
∂x2  + 

∂2Ee
∂y2  + 2jk

∂Ee
∂z  +  

2jω
c2  

∂Ee
∂t  = 0 (6.26)

which may also be written as

∂2Ee
∂x2  +  

∂2Ee
∂y2  +  2 jk

∂Ee
∂z  +   

2jk
c  

∂Ee
∂t  =  0 (6.27)

 PLANE WAVE

A scalar plane wave propagating in the direction of the wave vector
k is written as

E(x,y,z) = E0exp(jk.r) = E0exp(jkxx+jkyy+jkzz) (6.28)

where r  is the position vector:

r  = xax + yay + zaz (6.29)

and ax, ay, az are unit vectors in the X and Y direction.
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The variables k and ky denote the lengths of the components of the
wave vector k in the X and Y direction where

k  =  ω/c = 2π/λ =  kx2  +  ky2 +  k z2 (6.30)

Eq. (6.30) follows directly by substituting (6.28) into (6.8). However,
strictly speaking, (6.28) does not satisfy eq. (6.3) unless kx = ky = 0
(see Ex. 6.1).  In scalar optics we assume that kx and ky are
sufficiently small, so that (6.3) is satisfied. In other words, we
assume that the wave propagates in a direction not too far off-axis.
This is called paraxial propagation.

PARAXIAL APPROXIMATION

Fig. 6.1 shows the angles φx, φy, and φz are the angles that k makes
with the X, Y and Z axis respectively. In terms of the direction
cosines:

kx= kcosφx, ky= kcosφy, kz = kcosφz (6.31)

It is often more convenient to express this in terms of the azimuth
angle φ (angle between k and its projection on the YZ plane) and the
elevation angle φ'  (angle between k and its projection on the XZ
plane), as illustrated in Fig. 6.1
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kx= ksinφ, ky = ksinφ', kz = k 1-sinφ2 -  s i n φ'2 (6.32)

In many cases k is directed at only a small angle with respect to the
Z axis. This is called paraxial propagation and is characterized by
φ,φ'<<1 i.e. φ≈kx/k and φ'≈ky/k In such cases we may write
approximately:

kz  = k2-kx2-ky2  ≈ k - k x2/2k-ky2/2k ≈ k - k φ2/2-kφ'2/2

(6.33)
and

E(x,y,z) ≈ E0exp[(jk-kx2/2k-ky2/2k)z] exp(jkφx +jkφ'y) =

                E0exp[jk(1-φ2/2 -φ'2/2)z]exp(jkφx +jkφ'y)

(6.34)

EVANESCENT WAVE
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Note from (6.30) that, if kx2 + ky2  > k2, the z-component of k i.e. kz
becomes imaginary. The wave then propagates in the +Z direction as
exp(kz) or exp (-kz):

E(x,y,z) = E0exp(±kzz)exp(jkxx +jkyy) (6.35)

The "plus z" version is obviously physically impossible for all z>0,
because of the implied unlimited growth of the wave. The "minus z"
version is possible, provided the wave originates from a current or
charge carrying surface, located at a finite value of z. This kind of
wave is called an evanescent wave and decays quickly away from the
surface that originated it.

WAVE FRONTS

A surface on which the phase of the wave is constant is called a
wavefront. For the plane wave of (6.28), the wavefronts are
obviously given by the surfaces

k
k
.r  = d (6.36)

where d is a real constant. As shown in Fig. 6.2, these surfaces are
planes perpendicular to k, a distance d from the origin.
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` SPHERICAL WAVE

In the case of spherical waves the field is given by

E(x,y,z) = 
1
r  exp (±j k r )  =  

1
r  exp(±jk x2+y2+z2) (6.37)

where the plus sign denotes a diverging wave (going out from the
source at z=0) , the minus sign a converging wave (coming in to the
sink at z=0). As shown in Ex 6.2, expression 6.37 satisfies the
Helmholtz equation.

It is readily seen from (6.37) that the wavefronts of a spherical
wave are spheres:

r = constant (6.38)

In paraxial propagation the field does not propagate at too steep an
angle i.e., it is limited to a region where x2<<z2, y2<<z2, and we may
write:
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E(x,y,z) ≈ 
1
z exp(±jkz) exp( ± jkx2/2z ± jky2/2z)

(6.39)

As before, the plus sign denotes a diverging wave, the minus sign a
converging wave. The factor exp(±jkz), being independent of x and y,
is frequently left out. The amplitude factor 1/r is approximated by
1/z while the phase factor (being more sensitive to small changes in
r) is approximated to order x2 and y2. Note that, in the factor exp( ±
jkx2/2z ± jky2/2z), z is the radius of the wavefront through the
point z. The factor itself is an approximation for the phase in the
plane perpendicular to the Z axis at z. In general, factors such as

exp( ± jkx2/2R ± jky2/2R)

denote a spherical wavefront of radius R whereas

exp( ± jkx2/2R1 ± jky2/2R2)

denotes a wavefront with radius R1 in the X direction and radius R2
in the Y direction. A heuristic explanation of (6.39) - limited to the
XZ plane - is shown in Fig. 6.3
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CYLINDRICAL WAVE

A cylindrical wave is essentially a one-dimensional spherical wave,
i.e.,  it is independent of y and varies in the XZ plane only,  with r =

x2+z2 .  The amplitude is then proportional to 1/ r rather than
1/r, i.e.

E(x,y,z) = 
1

r
 exp (±j k r )  =  

1

r
 exp(±jk x2+z2) (6.40)

As shown in Ex. 6.3, eq.(6.40) satisfies the Helmholtz equation for
kr>>1, i.e., r >> λ.

It follows immediately from (6.40) that the wavefronts of a
cylindrical wave are cylinders with axes along y:

r = x2+z2  = constant. (6.41)
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In the paraxial approximation (6.40) becomes:

E(x,y,z) ∝ 
1

z
 exp(±jkz)exp( ± jkx2/2z) (6.42)

CIRCULAR  GAUSSIAN BEAM

The field of a circular Gaussian beam at z is given by :

E(x,y,z) = E0  
w0
wz

 exp[ +jkz-jη(z) +j
kr2

2Rz
 +

r2

wz2 ] (6.43)

where w0 is the waist ( beam radius where the amplitude has
decreased to 1/e of the maximum value) at z=0; wz = wz(z), the
waist at z, and r is a transverse coordinate r = x2+y2. The function
η(z) is a slowly varying phase term. The parameter Rz = Rz(z) i s
called  the radius of curvature of the wavefront at z, in analogy to
the paraxial approximation (6.37) of the spherical wave (6.39).
However, unlike (6.37), the radius of curvature is not equal to the
distance z from the origin: the wavefronts are spheres, but they are
not concentric.  It is shown in Ex. 6.4 that, in order for (6.43) to
satisfy the complex profile equation (6.25), the following relations
must hold:

wz = wo 1  +  
z2

z02 (6.44)

Rz = z (1 + 
z02

z2 ) (6.45)

η(z) = tan- 1  
z
z0

(6.46)

where

    z0 = k 
w02

2 (6.47)
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Fig. 6.3 illustrated the XZ crossection of a propagating
circular Gaussian beam. The 1/e contour line is stylized. The "break
point" z0 indicates where the beam has spread to 2 its initial
width.
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w
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Diffraction angle

Fig. 6.4

ELLIPTICAL GAUSSIAN BEAM

The field of an elliptical Gaussian beam is given by:

E(x,y,z) = E0  
w0xw0y
wzxwzy

 exp( +jkz) x

exp[-jηx(z) +j
kx2

2Rzx
 +

x2

wzx2 ] exp[ -jηy(z) +j
ky2

2Rzy
 +

y2

wzy2 ] (6.48)

where w0x and w0y are the waists at the origin in the XZ plane and
YZ plane  respectively; wzx and wzy are those waists at z; and Rzx and
Rzy are the radii of curvature in the XZ plane and YZ plane at z.

The following relations apply:
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wzxy = woxy 1  +  
zxy2

z02 (6.49)

Rzxy = z (1 + 
z0xy2

z2 ) (6.50)

η(z) = 
1
2 tan- 1  (

z
z0xy

) (6.51)

where

    z0xy = k 
w0xy2

2 (6.52)

and the subscript xy applies to either x or y.

EXAMPLES

EX  6.1

We will first show that , strictly speaking, a plane wave traveling in
an  direction other than Z, while polarized in the X direction, does
not satisfy the Helmholtz equation.

The electric field vector is given by

E(x,y,z) = E0axexp(-jk.r) = E0axexp(-jkxx- jkyy- jkzz)

Hence:

∇.E = 
∂Ex
∂x  + 

∂Ey
∂y  + 

∂Ez
∂z   =-jkx E0exp(-jkxx- jkyy- jkzz) ≠ 0

which completes the proof.

A more general statement is that for ∇.E to be zero, E must
perpendicular to the direction of propagation k. This may be shown
as follows.Let

E(x,y,z) = E0exp(-jk.r ) =

(E0xax + E0yay + E0zaz)exp(-jkxx- jkyy- jkzz)
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Hence

∇.E = 
∂Ex
∂x  + 

∂Ey
∂y  + 

∂Ez
∂z  =-j(kxE0x+kyE0y+ kzE0z)exp(-jk.r )

This can only equal zero if (kxE0x+kyE0y+ kzE0z) = 0 and hence k must
be perpendicular to E0

Ex 6.2

The spherical wave E(x,y,z) = 
1
r  exp (±jkr)  satisfies the Helmholtz

equation ∇2E + k2E = 0.

It is more convenient to recast the Helmholtz equation in spherical
coordinates. Because E(x,y,z) only depends on r, we use the following
expression for the Laplacian [Ref 2]

∇2E = 
1
r2

∂
∂r  





r2∂E

∂r (6.2.1)

After some algebra, we find that

1
r2

∂
∂r  





r2∂E

∂r  = -k2E

so that  the Helmholtz equation is satisfied.

Ex. 6.3

We will show that the cylindrical wave of 6.21 satisfies the
Helmholtz equation ∇2E + k2E = 0 if kr>>1

We use a cylindrical coordinate system with the axes along Y. Taking
into account that E only depends on r = x2+z2, the Helmholtz
equation may be written as
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1
2k

1
r

∂E
∂r 





r
∂Ε
∂r  + k2E=0 (6.3.1)

Substituting

E(x,y,z) = 
1

r
 exp (±jkr)

into (6.3.2), we find

-k2E[1-
1

4k2r2] +k2E = 0 (6.3.2)

We see that (6.3.2) is satisfied if kr>>1.

Ex. 6.4

Propagation of a circular Gaussian beam.

We assume that the beam is given by

E(x,y,z) = A(z) exp[-a(z)(x2+y2)]exp(jkz) (6.4.1)

so that the complex profile Ee is

Ee =  A(z) exp[-a(z)(x2+y2)] (6.4.2)

Applying the complex profile equation

∂2Ee
∂x2  + 

∂2Ee
∂y2  +2jk

∂Ee
∂z  = 0 (6.4.3)

to (6.4.2) we find:

-4a + 4a2x2 + 4a2y2 +2jk
1
A

dA
dz - 2jkx2da

dz - 2jky2da
dz = 0

(6.4.4)
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Setting the constant terms and the coefficients of x2, y2 separately
equal to zero, we obtain:

-2a + jk
1
A

dA
dz  = 0 (6.4.5)

2a2 - jk
da
dz = 0 (6.4.6)

From (6.4.6) it follows immediately that

a(z) = 
1

w02  +2jz/k
(6.4.7)

where w02 = a(z=0), the beam radius at the origin.

Eq (6.4.7)  may be written as:

a(z) = 
1

w02(1 + 
4z2

k2w04)
   -  

j k

2z(1+
k2w04

4z2 )
 (6.4.8)

Defining

 z0 = kw02/2 = πw 02/λ (6.4.9)

we may write

a(z) =  
1

w2(z)  - 
j k

2R(z) (6.4.10)

where

w2(z) =   w02(1 + 
z2

z02) (6.4.11)

R(z) =    z(1+
z02

z2 ) (6.4.12)

Combining (6.4.5) and (6.4.6) gives
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1
A

dA
dz = 

1
a

da
dz (6.4.12)

whence A = Ca

At z=0, A=A0 and a = 
1

w02
  hence C = A0w02

With (6.4.7) it then follows that

A(z) = 
A0w02

w02  + 2jz/k =  
A0w02

w04  + 4z2/k2
exp[-jtan- 1 (

2z
kw02)]

`̀ (6.4.13)

With (6.4.9) and (6.4.11)  this may be written as

A(z) = A0 
w0

w(z) exp(-jη(z)) (6.4.14)

where

 η(z) = tan- 1  (
z
z0

) (6.4.15)
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