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Algebraic decomposition of fat and water in MRI
Mathews Jacob, Member, IEEE, and Bradley P. Sutton, Member, IEEE

Abstract— The decomposition of MRI data to generate water
and fat images has several applications in medical imaging,
including fat suppression and quantification of visceral fat. We
introduce a novel algorithm to overcome some of the problems
associated with current analytical and iterative decomposition
schemes. In contrast to traditional analytical schemes, our
approach is general enough to accommodate any uniform echo-
shift pattern, any number of metabolites and signal samples.
In contrast to region-growing method that use a smooth field-
map initialization to resolve the ambiguities with the IDEAL
algorithm, we propose to use an explicit smoothness constraint
on the final fieldmap estimate. Towards this end, we estimate
the number of feasible solutions at all the voxels, prior to the
evaluation of the roots. This approach enables the algorithm
to evaluate all the feasible roots, thus avoiding the convergence
to the wrong solution. The estimation procedure is based on
a modification of the harmonic retrieval (HR) framework to
account for the chemical shift dependence in the frequencies.
In contrast to the standard linear HR framework, we obtain
the frequency shift as the common root of a set of quadratic
equations. On most of the pixels with multiple feasible solutions,
the correct solution can be identified by a simple sorting of
the solutions. We use a region-merging algorithm to resolve the
remaining ambiguity and phase-wrapping. Experimental results
indicate that the proposed algebraic scheme eliminates most of
the difficulties with the current schemes, without compromising
the noise performance. Moreover, the proposed algorithm is also
computationally more efficient.

Index Terms— linear prediction, harmonic retrieval, fat water
decomposition, Sylvester matrix, MRI

I. INTRODUCTION

In medical imaging applications of magnetic resonance
imaging, the acquired image is dependent on various chemical
species as well as the magnetic field (B0) inhomogeneity.
The decomposition of the images into chemical concentrations
and the B0 map is crucial for various applications. The main
utility of this scheme is the suppression of unwanted signals
from species such as fat, which often obscures the underly-
ing pathology [1]. This approach is also used to accurately
estimate the fat volume in obesity-induced illnesses [2], [3].
Since the B0 induced frequency shift causes image distortions
in many MRI acquisition schemes, a precise estimate of the
field map is crucial in obtaining distortion-free reconstructions
[4]–[7].

In recent years, there has been renewed interest in Dixon-
like water-fat decomposition schemes due to their robustness
to B0 and B1 (radio-frequency field) inhomogeneities [8]–[16].
The standard practice is to acquire two or three source MR
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images, each with slightly different echo-times. These methods
are classified as two or three-point schemes depending on the
number of source images used. We focus on three point ac-
quisition in this paper. The source images are processed using
analytical or iterative algorithms to estimate the concentrations
and B0 field map. These algorithms assume a parametric two-
frequency model, where the difference between the frequencies
(chemical shift between water and fat) is a known constant (see
Fig. 1 for a graphical illustration). This model-based approach
enables the estimation of the parameters from fewer source
images, thus providing the estimates in a reasonable scan
time. However, this approach suffers from two main sources
of ambiguity: (a) when uniform echo-shifts are considered,
the estimated solutions may suffer from phase wrapping. The
range of field-map frequencies that can be uniquely estimated
is [− 1

4πT ,
1

4πT ), where T is echo-spacing. The estimates of
the field-map frequencies that are outside this range will be
wrapped back to this fundamental range. (b) the algorithm
leads to two feasible solutions on voxels with only one
metabolite. When one of the chemicals is absent, either of the
two frequencies in the model may fit the single exponential due
to the metabolite that is present. Both of these uncertainties
cannot be resolved from the measured data; additional prior
information has to be used to resolve these ambiguities. For
convenience, we will refer to the unique solution in the
fundamental range as simply the unique solution in the rest of
the paper.

Analytical schemes offer an elegant means to estimate the
parameters as simple non-linear functions of the measured
samples [8]–[12]. These methods evaluate two roots at every
voxel (irrespective of whether both species are present or not).
They then use a mixture of heuristic and prior information
to resolve the ambiguities [8]–[12]. Since these algorithms
are designed for specific echo-shift patterns [8], [9], their
extension to arbitrary patterns is not obvious. The echo-
shift patterns for which these reconstruction schemes were
designed often provide redundant measurements, thus resulting
in ambiguous reconstructions [13]. In addition, the extension
of these methods to estimate more than two metabolites is
also non-trivial. Moreover, the noise performance of these non-
linear schemes might be suboptimal.

The IDEAL algorithm formulates the estimation of the
model parameters as an optimization problem, where the
maximum likelihood (ML) criterion is minimized [13], [14].
This technique uses an iterative optimization scheme to min-
imize the non-linear criterion. In contrast to the analytical
methods, IDEAL assumes a single solution at every voxel.
When there are two feasible solutions, it converges to the one
of them, depending on the initialization. Moreover, the non-
linear ML criterion has several local minima, depending upon
the fat-water concentrations and echo-shift parameters [17].
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A heuristic scheme to initialize IDEAL and thus avoid these
problems has been proposed in [17]. This approach attempts
to resolve the uncertainties is by using the prior knowledge
of the field map smoothness [17].This scheme estimates the
voxels sequentially along a rectangular spiral trajectory. To
derive the initialization of the current pixel on the trajectory,
it performs a polynomial fit of the already solved pixels
in a square neighborhood. While it solves the convergence
issues in many cases, it often leads to propagation of errors
along the trajectory as explained in [17]. Moreover, there are
often very few reliable pixels (in the square neighborhood) in
regions close to the edge of the object and noisy regions; this
often leads to ill-posed/poor polynomial fit leading to poor
initializations as demonstrated in the paper.

To overcome the problems associated with the analytic and
iterative schemes, we propose a novel framework for fat-water
decomposition. In contrast to the region growing approach of
initializing the iterative algorithm with a smooth function to
obtain a smooth solution, we propose to impose an explicit
smoothness constraint on the final field-map estimate. Due to
the non-linear nature of the estimation process, the initializa-
tion with a smooth function may not lead to a smooth field map
estimate. Besides, the polynomial fitting procedure to derive
the field map estimate [17] may be ill-posed at regions close to
the edge of the objects. The resulting errors may be propagated
along the rectangular spiral trajectory used by the algorithm as
explained in [17]. To enforce the smoothness constraint on the
final fieldmap estimate, we estimate all the feasible solutions
at each voxel. The number of feasible solutions (model order)
at each voxel is estimated from the noisy data, prior the
the estimation of the solutions. The correct solutions from
these feasible sets are then chosen subject to the smoothness
constraint. This method is also much more computationally
efficient than both the standard IDEAL and region growing
IDEAL algorithms.

The estimation of the feasible solutions is based on the
harmonic retrieval (HR) frequency estimation theory. This
well-established framework is used for the estimation of
unknown frequencies in a time domain signal [18], [19]; in the
context of MRI, it has been used to estimate the metabolite
peak locations [20]–[22], solvent suppression [20]–[23] in MR
spectroscopic imaging, and field inhomogeneity estimation
[24]. The main contribution of this paper is the modification of
the standard HR setup, where the frequencies are assumed to
be independent, to introduce the prior knowledge of difference
in frequencies of the chemical species. The introduction of
this information makes the approach more robust than the
standard HR model. Similar approaches (using chemical shift,
amplitude constraints, and frequency range) to constrain har-
monic retrieval have been investigated in [22]. This approach
was designed in the context of MR spectroscopy applications,
where large number of time samples were available. Our main
focus is to estimate the unknowns from minimal number
of samples, where this scheme is not readily applicable.
Moreover, [22] assumes unique solutions, which is not true
in our case.

We obtain the feasible solutions as the common roots of a
set of quadratic equations. This is in contrast to the standard

HR setup, where a set of linear equations are solved. Thanks
to the well established algebraic theory of polynomials [25]–
[27], the model order evaluation and computation of the
feasible solutions are efficiently implemented using simple
matrix operations. The ambiguity removal procedure picks
the correct root from the feasible sets (at each ambiguous
voxel), such that a smoothness criterion is minimized. This
criterion is only used in selecting the correct component
at the ambiguous voxels and hence does not smooth the
measured field map as in regularization based schemes. We
use a region merging heuristic to derive a computationally
efficient scheme to remove the ambiguity and thus to derive
the smooth field map estimate. Thanks to the simple matrix
manipulations at each voxel to derive the feasible solutions and
the region merging step that consider large regions rather than
individual pixels, the proposed algorithm provides significant
computational savings over standard schemes.

The proposed scheme is general enough to be used with any
uniform echo-shift pattern. We also generalize it to accommo-
date arbitrary number of metabolites and signal samples, thus
enabling its use in other problems such as MR spectroscopy.
Since the estimation procedure involves simple matrix opera-
tions, the algorithm is computationally efficient. Using Monte-
Carlo simulations, we show that the benefits associated with
the proposed scheme come only at a marginal decrease in
noise performance over iterative schemes.

The rest of the paper is organized as follows. In Section II,
we review the Dixon decomposition scheme and the harmonic
retrieval framework. In Section III, we introduce the novel al-
gorithm. We address the uniqueness of the estimate in Section
IV. In Section V, we consider the extension of the algorithm to
multiple chemical species (more than 2) and arbitrary number
of samples. We validate the fat-water decomposition algorithm
and compare its noise performance with the iterative scheme
in Section VI.

II. PRELIMINARIES

We will now review the three point Dixon method and the
harmonic retrieval framework on which our method is based.
We will also define the notations followed in the paper.

A. Dixon decomposition: mathematical formulation

In the standard setup, the signal at each spatial location x
is modeled as

s(x, t) = cwater(x)eiω(x)t + cfat(x)ei(ω(x)+∆)t, (1)

where cwater(x) and cfat(x) are the concentration values of
water and fat respectively. Various system non-idealities such
as k-space sampling shifts, subject motion and RF effects can
lead to spatially varying water and fat phases [28]. Hence,
assuming the concentrations to be real quantities may lead to
artifacts. The phases of cwater and cfat may be modeled to be
the same as in [28]. However, we assume them to be complex
quantities for simplicity. ω(x) denotes the frequency shift
due to the magnetic field inhomogeneity. ∆ is the chemical
shift between water and fat peaks; see Fig. 1 for a graphi-
cal illustration. The unknowns in (1) are the concentrations
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cwater(x) and cfat(x) and the field-inhomogeneity induced
shift ω(x). Since the estimation procedure treats each voxel
independently, we will omit the dependence on the spatial
variable x for simplicity.

Water

Fat

∆ω

f →
Fig. 1. Water-fat-B0 model. The water and fat peaks are separated by a
frequency indicated by ∆ corresponding to the chemical shifts between them.
Both the peaks are shifted by the field map induced frequency shift ω. The
unknowns in the model are the water and fat concentrations (indicated by
cwater and cfat) and the B0 induced frequency shift (denoted by ω).

The standard practice is to estimate these unknowns from
three uniformly spaced samples of the signal, specified by
s(nT + δ);n = 0, 1, 2. The sampling step is denoted by
T , while δ is a shift parameter to make the echo-shift pat-
tern asymmetric. The Dixon decomposition scheme uses the
symmetric echo-shift scheme specified by (T = π/∆, δ =
−π/∆), while the IDEAL scheme assumes an asymmetric
pattern (T = 2π/3∆, δ = −π/6∆). Assuming this pattern,
the signal samples are given by

s[n] = dwater

(
eiωT

)n
+ dfat

(
ei (ω+∆)T

)n
, (2)

where dwater = cwatere
iωδ and dfat = cfate

i(ω+∆)δ . cwater and
cfat are the concentrations of water and fat respectively. We
use the square brackets to distinguish between discrete and
continuous domain signals. Note that we model the fat and
water signals as undamped exponentials. Since the sampling
step T is typically much smaller than the T2 and T ∗2 of the
metabolites, this assumption does not affect the estimation.

As discussed before, fitting the two-frequency model, indi-
cated in (1), to a single frequency signal (on voxels with only
fat or water present) will result in two feasible solutions. The
single exponential may be represented by either of the two
frequencies. This is a fundamental ambiguity and can only be
resolved by using additional prior information. We will discuss
our approach for removing this uncertainty in Section III-D.

B. Frequency estimation using harmonic retrieval

The harmonic retrieval (HR) framework deals with the
estimation of unknown frequencies in a signal from its time
samples [18]. The framework is rooted on the concept of the
annihilating filter. Assume that we have the samples of an
exponential given by

s[n] = γn, (3)

where γ = exp(jω);ω ∈ < . It is easy to see that the
parametric filter (termed as forward annihilating filter)

ĥ(z) = 1− γz−1 (4)

will annihilate the exponential (3); i.e., s[n] = γ s[n−1], ∀n.
Any two consecutive samples of s[n] will provide a linear
equation in γ. The unknown parameter γ is estimated from
these linear equations. This estimation of the frequency ω ∈
[−π, π) is unique [18] and is also robust [19].

Since |γ| = 1 (exponential is undamped), the backward
filter 1 − γz will annihilate the sequence s∗[n] = γ−n: the
conjugate of s[n]. This provides an additional set of equations
that may be used to improve the robustness of the estimate.
We refer the reader to [18] for a more in-depth coverage of
the harmonic retrieval framework.

If a two-frequency model is considered, the expression for
the signal is given by

s1[n] = c0γ
n + c1η

n. (5)

The corresponding parametric filter is given by

ĥ1(z) = (1− γz−1)(1− ηz−1). (6)

The application of this filter on the time series will provide a
set of linear equations in terms of the filter coefficients. In the
standard HR framework, the frequencies are obtained as the
roots of this polynomial.

III. METHOD

We have seen that the number of feasible solutions is a vari-
able, depending on the number of chemical species present in
the voxel. This makes it difficult to implement the estimation
procedure as a a one-step algorithm. We propose a sequential
approach for the estimation of the field inhomogeneity and the
concentration maps. The basic steps involved are:

1) Estimation of the number of feasible solutions (de-
scribed in Section III-C).

2) Evaluation of the feasible solutions (described in Section
III-C).

3) Resolution of the ambiguities (described in Section III-
D).

4) Computation of the concentration maps (described in
Section III-E).

The resulting algorithm is computationally efficient. Thanks
to the algebraic theory of polynomials, the first two steps
are performed efficiently using matrix operations. We use
a fast, greedy, algorithm to pick the correct root from the
feasible solution sets at each ambiguous voxel. Once the field-
inhomogeneity is determined unambiguously, the computation
of the concentration maps involves the inversion of a system
of linear equations.

A. Field map estimation: formulation using HR

Comparing (5) with the fat-water model specified by (1),
we find that γ = eiωT and η = ei(ω+∆)T . Unlike the standard
HR setting, the frequencies in our model (specified by (1) )
are related to each other through the relation

η = γλ, (7)

where λ = ei∆T is a known quantity. This is the central dif-
ference between the standard HR framework and the proposed
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scheme. We make use of the above relation to derive a filter,
parameterized in terms of γ:

ĥγ(z) = (1− γz−1)(1− γλz−1)
= 1− γ(1 + λ)z−1 + λγ2z−2 (8)

Since γ and λ are on the unit circle, we can also use the
backward relation. The backward filter is given by hγ

(
z−1
)
.

Applying these filters to the time sequences s[n] and s∗[n],
we obtain the following set of quadratic equations in γ:

s[n]− (1 + λ)s[n− 1] γ + λ s[n− 2] γ2 = 0 (9)
s[n− 2]∗ − (1 + λ)s[n− 1]∗ γ + λ s[n]∗ γ2 = 0 (10)

Note that these quadratic equations are valid for any value of
n. The actual number of equations at our disposal depends on
the number of available signal samples. In three-point Dixon
setup, we have three signal samples and hence two quadratic
equations. This is the minimum number of samples required
to estimate the parameters using this framework. Similarly,
we will have four quadratic equations, when four samples are
available.

Given the samples s[n], (9) and (10) are the necessary
conditions to be satisfied by the solution. We term a solution
as feasible, if it satisfies all the equations specified by (9) and
(10). Thus, the roots of the greatest common divisor (GCD)
of the polynomials will indicate the set of feasible solutions.
The number of feasible solutions is obtained as the degree of
the GCD polynomial. The GCD thus provides the complete
solution to the problem at hand. We will now focus on the
evaluation of the GCD.

B. Evaluation of the polynomial GCD

In this section, we restrict ourselves to the three point
Dixon scheme for simplicity. We will generalize this scheme to
arbitrary number of metabolites and signal samples in Section
V. The evaluation of the GCD can be performed in terms of
the associated Sylvester matrix [29]. Assume two quadratic
polynomials specified by P (γ) = p0γ

2 + p1 γ + p2 and
Q(γ) = q0γ

2+q1 γ+q2. The 4×4 Sylvester matrix associated
with these polynomials is given by

SP,Q =
[

SP
SQ

]
. (11)

The 2 × 4 submatrix SP , corresponding to the polynomial
P (γ), is defined as

SP =
[
p0 p1 p2 0
0 p0 p1 p2

]
, (12)

while SQ is defined likewise. Post-multiplying the Sylvester
matrix by the vector [γ3, γ2, γ, 1]T provides a vector of
polynomials. These polynomials serve as a convenient ba-
sis for the GCD; pre-multiplication of this vector by x =
[a0 a1 b0 b1]T corresponds to evaluating the polynomial
A(γ)P (γ) +B(γ)Q(γ), where A(γ) = a0γ+a1 and B(γ) =
b0γ + b1. The Sylvester matrix has some nice properties that
are very useful for our application:

1) If the GCD of P (γ) and Q(γ) is a polynomial of degree
r, then SP,Q will be of rank 4− r [30].

2) If SP,Q is triangulated to row-echelon form using only
row operations, then the (4− r)th row gives the coeffi-
cients of the polynomial GCD [26].

When the signal samples are not corrupted by noise, these
properties enable us to estimate (a) the number of feasible
solutions and (b) the solutions themselves. We will now focus
on the noisy case.

C. GCD estimation when the samples are noisy

When the coefficients of P (γ) and Q(γ) are corrupted
by noise, they may not have any common roots; SP,Q will
be a full rank matrix in this case. Hence, we look for the
approximate GCD of the two polynomials [29]. This involves
the estimation of the degree of the GCD and the evaluation
of the feasible solutions (steps 1 and 2 of our sequential
algorithm).

We use the singular value decomposition (SVD) to estimate
the rank (and hence the degree of the GCD) of SP,Q in the
presence of noise. Once the rank is estimated, the denoised
matrix (denoted by S′) is obtained by truncating the lower
singular values. This is a standard procedure in signal pro-
cessing for rank reduction and matrix denoising1.

We denote the SVD of the Sylvester matrix as SP,Q =
UΣVT . Σ is a diagonal matrix, whose singular values are
arranged in the descending order; i.e. (Σ1,1 ≥ Σ2,2 ≥ Σ3,3 ≥
Σ4,4). Similarly, the SVD of the denoised matrix S′ is given
by S′ = UΣ′VT , where Σ′ is derived from Σ. We then
derive the approximate GCD (whose degree is indicated by r)
using the LU factorization of S′ [26]. The GCD estimation
procedure involves the following basic steps.
• Perform the singular value decomposition of S: S =

UΣVT . Set Σ′ = Σ and Σ′4,4 = 0.
• Threshold the singular value Σ′3,3 with an appropriate

limit parameter. If Σ′3,3 = 0, then r = 2. Else r = 1.
• Perform LU decomposition of S′ = UΣ′VT ; the (4 −
r)th row provides the approximate GCD of the two
polynomials.

We set Σ′4,4 = 0, because we expect at-least one feasible
solution to the system of quadratic equations. The threshold
for Σ3,3 is determined experimentally on a large number of
acquired MR images (we use a threshold of 0.15 ∗ Σ1,1).
The worst-case scenario is when a pixel with a non-unique
solution (two zero singular values) is classified as a unique
one (single zero singular value). If the single solution in this
case is the wrong one, it is not possible to correct it in the
subsequent processing steps. In contrast, if a unique pixel is
classified as non-unique and one of the solutions is the correct
one, the resulting ambiguity can be resolved using the region
merging algorithm. Hence, we set the value of the threshold
high so as to avoid non-unique regions being labeled as unique.
Alternatively, the optimal value of r may be evaluated using
the minimum descriptor length criterion [32]. Intuitively, the
threshold that is used to determine the number of metabolites

1This approach does not preserve the Sylvester structure of the matrix.
However, it has been shown to be a robust approach and provides reasonably
accurate estimates. The quality of the algorithm may be improved by using
structure preserving algorithms [31].
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in a voxel is a function of the noise variance. Its value is
nonlinearly dependent on the minimum concentration of the
second metabolite (the one with lower concentration), which
is required to provide a unique solution at the specified noise
variance.

D. Selecting the solutions from the feasible sets

Performing steps 1 and 2 of the sequential algorithm, de-
scribed in the previous subsection, provides a feasible solution-
set at every pixel. We have seen that there is a fundamental
ambiguity when any of the metabolites are absent. For pixels
containing only water, the correct solution is the one with the
highest field-map value. Similarly, the correct solution is the
one with lowest field-map value for pixels containing only
fat. In in-vivo applications, it is found that fat often coexists
with water. Hence the solution is unique at the fat voxels.
In contrast, many pixels will only have water present in it.
Thus, the correct solution (on the non-unique pixels) is almost
always the one with the highest field-map value. This can be
seen from the illustration shown in Fig. 8-a. A major reason
for this assumption to be wrong in in-vivo applications is due
to phase-wrapping. If the field map is too low at a pixel with
only water present, the wrong solution may wrap and thus
have a higher field map value. Similarly, if the field-map is
too high, the correct solution may wrap and end up being
lower in value than the wrong solution.

We use the above assumption (solution with highest field
map value is the correct one) to only derive a good initial
guess. Starting with this guess, we propose to use the prior
knowledge of the smoothness of the field map to resolve
both of these uncertainties (non-unique solutions and phase-
wrapping). Thus our algorithm is also able to derive the correct
solution even if there are pixels with only fat present. We
formulate the ambiguity removal problem as the minimization
of the global cost function

C(n,q) =
P−1∑
p=0

∣∣∣∣∇(ωn(p) + q(p)
2π
T

)∣∣∣∣2 . (13)

Here ∇ω indicates the gradient of ω. P is the total number of
pixels. n(p) indicates the index of the selected root (n(p) ∈
{0, 1} on ambiguous pixels, while n(p)=0 on the unique
pixels). Similarly, the integer q(p) determines the phase offset
at the pth pixel. The vectors n and q are essentially the
unknowns.

The derivation of the optimal n and q that minimize (13)
is essentially a quadratic integer optimization problem. The
evaluation of the exact solution has a prohibitive computational
complexity. We have seen that the solution is well-defined in
most regions of the image, except for small connected sub-
regions where the solutions are swapped or phase wrapped.
Hence, we propose to use a region-merging heuristic to derive
a computationally tractable algorithm. This greedy technique
is a straight-forward extension of the approach pursued in [33]
for phase un-wrapping. While more sophisticated optimization
schemes such as [34] may provide better results than our
approach, we used the greedy strategy due to its ease of

implementation. Moreover, this approach worked well in all
our experiments.

The criterion (13) depends on the relative indices (differ-
ence in indices) between the neighboring pixels. We start
by assuming an initial set of regions, where the indices of
the roots as well as the phase offsets of all the pixels in
the same region are the same. One could start by assuming
each voxel as an independent region. However, to reduce the
computational complexity, we follow the approach in [33]. We
split the image into different connected regions, inside which
the phase values remain in a certain interval. This is achieved
by partitioning the image into different regions such that the
phase values fall in specified ranges (eg. . . . , [−2π/3,−π/3],
[−π/3,−0], . . .). The connected subregions of each of these
regions are identified and are assigned a different region
number.

With this partitioning and the assumption that the the indices
n(p) and the phase offsets q(p) are the same for all pixels in
the same region, we rewrite (13) as

C(n,q) =
N−1∑
i=0

N−1∑
j=i

C (i, j) + Cres, (14)

where

C (i, j) =
∑

m∈Ri;l∈Rj ;l∈N (m)

|ωn(m)−ωn(l)+2π(q (i)−q (j))|2.

(15)
Here Ri; i = 0 . . . N − 1 denote the different sub-regions
and n(m) ∈ 0, 1 indicates the index of the solutions on the
mth pixel. q(m) is the integer phase offset of the region Rm.
Here N (m) denotes the set of four neighboring pixels of the
pixel m. C(i, j) is the measure of the discrepancy between
the boundary pixels of regions i and j. Cres is the sum of the
discrete differences of the pixels inside the regions. Since Cres

does not play a part in the optimization process, we ignore it
in the optimization process. With this criterion, we follow the
approach taken in [33]. We sequentially merge pairs of regions,
until all the regions are merged. At each step, we compare all
the un-merged region pairs and compare the possible relative
indices and integer offsets as in [33]. We combine the pair,
whose relative indices and offsets if chosen correctly, will pro-
vide the maximal decrease in the criterion. This choice ensures
the maximal decrease of cost at each region-merging step. The
merged region is then considered as a single entity. Since this
is a greedy approach, no guarantees regarding the convergence
of the criterion to the global minimum can be made. However,
this approach works well in all the experiments considered and
is computationally efficient. The different steps of the region
merging process is illustrated in Fig. 8.

E. Concentration estimation (step 4)

Having derived the field map, the signal samples are linearly
related to fat and water concentrations. This is similar to the
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procedure followed in [13]. From (2), we have eiωδ ei(ω+∆)δ

eiω(δ+T ) ei(ω+∆)(δ+T )

eiω(δ+2T ) ei(ω+∆)(δ+2T )


︸ ︷︷ ︸

Aω

[
cwater

cfat

]
︸ ︷︷ ︸

x

=

 s[0]
s[1]
s[2]


︸ ︷︷ ︸

b

(16)
We estimate the concentrations as

x =
(
AT
ωAω

)−1
AT
ω b (17)

IV. UNIQUENESS OF THE SOLUTION

In this section, we analyze the uniqueness of the algorithm
in the context of three-point fat-water decomposition. Numer-
ical evaluation of the Cramer Rao bounds was used in [14]
to derive the optimal shift. In contrast, we use the quadratic
relationship (9) to analytically derive the uniqueness condition.
We inject the discrete fat-water model, specified by (2), into
the forward equation (9) and identify its roots as

γ̂ = {γ, γ f(qρ, δ,∆, T )} , (18)

where γ = eiωT . The first root is the expected solution,
while the second one is the expected solution multiplied by a
function f that depends on the echo-shift parameters δ and T ,
the chemical shift ∆, and the fat-water ratio qρ = ρfat/ρwater.
The non-linear function f(qρ, δ,∆, T ) is given by

f(qρ, δ,∆, T ) =
(

1 + qρ exp (i(∆T + ∆δ))
exp (i∆T ) + qρ exp (i∆δ)

)
. (19)

Due to the relation between the coefficients of (9) and (10),
the roots of these equations are also related to each other. If y
is a root of (9), then 1/y∗ will be a root of (10). Thus, the first
root in (18) is also a root of (10), and hence a feasible solution.
The second root will also be a feasible solution if and only
if |f | = 1 . This in turn implies that the feasible solution is
unique when |f | 6= 1. To study the uniqueness of the solution
derived by the proposed approach, we plot the magnitude and
phase of f as a function of qρ (for different values of δ) in
Fig. 2 (a) and Fig. 2 (b) respectively. We assumed that ∆T =
2π/3, the optimal value derived in [13].

Note from Fig. 2 that the symmetric case (δ = −2π/3) leads
to |f | = 1, irrespective of the value of qρ. This implies that
both the roots will be on the unit circle. There will always
be two feasible solutions. The second feasible solution will
be given by e(ω0T+6 f), where 6 f is a function of the ratio
of fat-water concentrations: qρ. Note that this solution will
be lagging the actual solution when ρwater < ρfat and will be
leading when ρwater > ρfat. It is also seen from Fig. 2 that for
assymetric echo-shift patterns (δ 6= −2π/3∆), |f | = 1 only
when qρ = 0 or qρ = ±∞. This implies that these patterns
lead to unique solutions, unless either fat or water is absent
in the voxel (qρ = 0 or qρ = ±∞). This corresponds to the
fundamental ambiguity discussed earlier. Note that in these
cases |f | = 1. It can also be seen from Fig. 2 (b) that the
second solution will lead the original one by ∆T = 2π/3,
when fat is absent in the voxel (i.e, qρ → 0). Similarly,
6 f converges to −∆T when water is absent. Thus, if the
wrong solution is chosen, the estimates of water and fat will

be swapped. We have thus shown that when both fat and
water concentrations are non-zero, all the asymmetric echo-
shift schemes provide unique solutions.
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(b) Phase

Fig. 2. The magnitude (a) and phase (b) of the non-linear function
f(qρ, δ,∆, T ) as a function of qρ . Curves corresponding to four different
shift parameters, ranging from −2π/3∆ to π/12∆, at a regular interval of
π/4∆ are shown. We assume the optimal sampling step T = 2π/3∆. Note
that |f | = 1 when δ = 0; the symmetric echo-shift scheme always yields
two feasible solutions. The second solution will be lagging or leading the
correct root depending on the value of qρ. The solution is unique for all the
asymmetric patterns, except when qρ → ±∞. These cases correspond to
the voxel containing only water or fat, where the solution is fundamentally
ambiguous. When the second solution is close to the unit circle, (when
qρ → ±∞), it may be misclassified to be on the unit circle in the presence
of noise. In these worst case scenarios, |f | is farthest from the |f | = 1 line,
when δ = −π/6∆.

If |f | is close to unity, the second solution will be close to
the unit circle. It may be misclassified as a valid solution in
the presence of noise. Thus, the regions close to qρ = ±∞
indicate the worst case scenarios. We see from the plots that
|f | is most different from unity when δ = −π/6∆. It is easy
to see that the the optimal shift parameter is invariant to shifts
by 2nπ. This shift is also the one that provides the most robust
solution as shown numerically in [13].

V. GENERALIZATION TO MULTI-METABOLITE AND
MULTI-POINT CASES

Our main focus, so far, was on the Dixon-three point decom-
position of water and fat. The generalization of the proposed
algorithm to arbitrary number of metabolites and number of
samples is straight-forward due to the well developed algebraic
formalism [25]. These schemes can be used for the MRI
exam of the breast with silicone implants as well as MR
spectroscopic imaging schemes, where the concentration maps
of multiple metabolites have to be derived from the MR data.
We will now briefly describe these generalizations.

A. Arbitrary number of metabolites

Assuming the number of metabolite resonances to be M ,
the discrete model is given by

s[n] =
M−1∑
m=0

dm (γ λm)n, (20)

where γ = eiω T , λm = ei∆mT , and ∆m is the chemical
shift of the mth metabolite. dm = cm e

i(∆m+ω)δ , where cm
is the concentration of the mth metabolite and ei(∆m+ω)δ is a
field and chemical-shift induced phase. Note that the observed
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(a) Water magnitude
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(b) Fat magnitude
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(c) Water phase
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(d) Fat phase
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(e) Field map

Fig. 3. Noise robustness of the proposed algorithm, in comparison to that of IDEAL. The effective number of signal averages (NSA) vs the fat-water ratio
(qρ), are plotted. Monte-Carlo simulation with 1000 trials is used to generate the plots. We assumed ω T = π/20 and the echo-shift pattern specified by
T = 2π/3∆, δ = −π/6∆ to generate the signal samples. Gaussian white noise of a specified variance, such that the SNR=100, was added to the signal
samples. Note that the NSA figures of the magnitudes, estimated with the proposed algorithm are exactly the same as IDEAL. The NSA figures corresponding
to the phases and the field map is marginally lower than the IDEAL scheme. In short, the results indicates that the noise performance of the algorithm is
almost comparable to the IDEAL scheme that is shown to attain the Cramer-Rao lower bound.

(a) Used in Fig 5 (b) Used in Fig 6 (c) Used in Fig 7 (d) Used in Fig.8 (e) Used in Fig.9

Fig. 4. Source MR images of the slices studied in Figs. 5-9: Three slices of a water-fat-inhomogeneity phantom, acquired using the GRE sequence, are
shown in (a)-(c). (a) indicates a slice of the phantom that is the furthest from the air-filled ball and hence has a small field-map dynamic range. It shows the
water filled container and the two jars with oil. Fig. (b) and (c) are slices of the same phantom that are closer to the ball. The field-inhomogeneity variations
are strong in these slices, especially close to the ball. One of the GRE source images used for the illustration in Fig. 8 is shown in (d). (e) is a source image
of the human brain, acquired using a spin echo sequence used to generate the images in Figs. 9.

signal is the sum of M exponentials. The corresponding
forward filter is

ĥγ(z) =
M−1∏
m=0

(1− γ λm z−1). (21)

It is an M -degree polynomial filter, parametrized in terms of
the unknown term γ. Applying this filter to the time series
s[n], we get the M th degree polynomial equation:

P (γ) =
M∑
m=0

(υ[m] s[n−m]) γm = 0, (22)

where υm are the coefficients of the filter υ̂(z) =
∏M−1
m=0 (1−

λmz
−1). Similarly, the backward equation provides another

M th degree polynomial, denoted by Q(γ). Similar to the
Dixon three point estimation scheme, the feasible solutions are
given by the GCD of these polynomials. The GCD is computed
using the 2M × 2M Sylvester matrix, specified by

SP,Q =
[

SP
SQ

]
. (23)

where the M × 2M submatrix SP is given by

SP =


p0 . . . pM 0 . . . 0
0 p0 . . . pM . . . 0
...

...
...

0 0 . . . p0 . . . pM

 . (24)

Similar to the fat-water case considered in Section III, we
estimate the degree of the GCD (indicated by r) and the GCD
itself from the Sylvester matrix. The degree of the GCD is
given by r = 2M − rank(SP,Q) [25]. The GCD polynomial
is obtained by the row echelon decomposition of the matrix,

followed by picking the (2M − r)th row. Note that the
minimum number of signal samples required for the estimation
is M+1. As in the two metabolite case, the number of feasible
solutions is upper bounded by M , depending on the number
of metabolites that are present in the voxel. The adaptation
of the rank estimation, denoising, and the ambiguity removal
algorithm is straightforward and hence will not be discussed.
As the number of metabolites increase, the number of feasible
solutions may also increase (depending on the location of
the metabolite peaks). The extension of the region merging
algorithm to this case is straightforward. The computational
complexity of the region merging algorithm increases as M2,
where M is the number of metabolites and hence the upper
bound on the number of solutions; there are M2 different
possibilities of solution indices between any two non-unique
regions.

B. Arbitrary number of samples

We will now generalize the multi-metabolite decomposition
algorithm to accommodate more samples. As explained in
Section III, the number of available equations also increase
with the number of signal samples. This approach can be
used to improve the robustness of the estimate. The increased
number of samples will also improve the accuracy of the model
order estimate. Let us assume that we have L polynomials
of degree M indicated by P0(γ). . . . , PL−1(γ). The feasible
solutions will satisfy all the polynomial relations Pl(γ) =
0, l = 0, . . . , L − 1. Hence, the solution set is obtained as
the roots of the GCD polynomial. The evaluation of the GCD
of L polynomials can be performed by using the LM × 2M
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generalized Sylvester matrix [25], specified by

S(P0,P1...PL−1) =


SP0

SP1

...
SPL−1

 , (25)

where each of the submatrices SPl
are defined as in (24).

Thanks to the generalized theory introduced in [25], the GCD
and its degree in this case is obtained as in the previous
cases. The degree of the GCD (denoted by r) is given by
r = 2M − rank(S(P0,P1...PL−1)), while the GCD is obtained
by reducing S(P0,P1...PL−1) to row-echelon form and picking
the (2M−r)th row. Note that the generalized Sylvester matrix
is rectangular as opposed to the square matrix in the critically
sampled cases considered above. The number of feasible
solutions, when the data is non-noisy, is independent on the
number of samples. Hence, the computational complexity of
the region growing algorithm in this case would be exactly the
same as the three point case.

VI. RESULTS

In this section, we validate the fat-water decomposition
algorithm using numerical simulations as well as experimental
data.

A. Simulation study of noise performance

The IDEAL algorithm minimizes the maximum likelihood
criterion and attains the Cramer-Rao lower bounds on the vari-
ances of the estimates [14]. In contrast, we resort to a multi-
step algorithm to avoid the convergence to wrong solutions
and local minima. It may be argued that the proposed scheme
may lead to a decrease in noise performance (i.e, increase
in variance of the estimates). Hence, in this subsection, we
analyze the noise-performance of the algorithm using Monte-
Carlo experiments.

For comparisons, we use the effective number of signal
averages (NSA) metric, discussed in [9], [14]. This is the
traditional measure of noise efficiency in the context of fat-
water decomposition [9]; it is defined as

NSA(ρ̂) =
σ2
s

σ2
ρ̂

, (26)

where ρ̂ is the magnitude estimate of one of the metabolites,
σ2
ρ̂ its variance, and σ2

s the variance of one of Dixon images.
The value of the NSA varies from 0 to N , where N is the
number of measurements (3 in the three-point Dixon case).
The traditional definition is valid only for the magnitude
estimates. It has been extended to the other parameters in [14].
For a detailed description, we refer the readers to [14].

We plot the NSA indices for the parameters of interest in
Fig. 3. We used 1000 trials to generate the plots. We assumed
ωT = π/20, T = 2π/3∆, and δ = 2nπ − π/6∆;n integer.
The experiments were repeated at different water-fat ratios.
Gaussian white noise of a specified variance was added to
the samples, such that the SNR of the samples is 100, a
reasonable value for SNR of our 3T images. Note that the

NSA indices for the water and fat magnitude for both the
algorithms are essentially the same. For the phases as well
as the field map, the NSA indices of the proposed scheme
is marginally lower than the IDEAL algorithm. Therefore, the
benefits of the proposed scheme come only at a negligible loss
in robustness.

B. Validation using phantom data

To test the ability of the algorithm to converge to the
correct root under controlled conditions, we created a water-
fat-inhomogeneity phantom. It consists of an outer container
filled with water. Small sealed jars of corn-oil were attached
to the interior of the container. We also fixed an air-filled
ball to generate a large field map. This phantom was scanned
using gradient echo sequence with three different echo times.
We used TR = 500ms and assumed the optimal echo shift
parameters: (T = 2π/3∆ and δ = (4π − π/6)/∆). This
translates to TE=3.4 ms, 4.2 ms, and 5 ms respectively. Three
slices of the the phantom are shown in Fig. 4.(a)-(c). The slice
indicated in Fig. 4.(a) is the furthest from the ball and hence
has a small dynamic range for the field map. The slices in Fig.
4.(b)&(c) are close to the ball and hence has a large dynamic
range.

The data was processed using the IDEAL algorithm, the
region growing IDEAL algorithm and the proposed algorithm.
Since the original implementations of IDEAL and region-
growing IDEAL were not available, we re-implemented them
in MATLAB. For the region growing IDEAL algorithm, we
assumed the same parameters2 (block size of 41 × 41 and
first order polynomial fit) and the same initialization scheme
as reported in [17]. The decompositions corresponding to the
slices are shown in Fig. 5, Fig. 6 and Fig. 7, respectively.
The dynamic range of the field map is small in the Fig. 5
and the iterative algorithm converged to the correct solution.
As expected, all the algorithms gave good decompositions of
fat and water in this case. In contrast,in Fig. 6, the IDEAL
algorithm converged to the wrong solution in regions with
large frequency shift, while the algebraic and the region
growing methods gave good estimates. In Fig. 7, both the
IDEAL and the region growing methods converged to the
wrong solution. The proximity of the regions with large field
map to the edge of the object led to the region growing
algorithm performing poorly. Note that in comparison to the
IDEAL, the region growing method propagated the errors
to large regions of the image along the rectangular spiral
trajectory. The algebraic method worked well in this case as
well.

The MATLAB implementation of the algebraic method took
around 4 seconds of computation time for a 128x128 image
on a 2.33 GHz Intel Core2Duo processor, without any parallel
threads. Note that this also included the time taken for the
region merging algorithm, which took around 1.8 seconds
of the total 4 second computation time. In comparison, the

2The results of the region growing IDEAL algorithm may be improved
with the optimization of the parameters. We varied the block-size without
observing much change in the results. However, a rigorous analysis of the
performance of this algorithm is beyond the scope of this paper.
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standard IDEAL algorithm with 45 iterations on each pixel
took around 32 seconds, while our MATLAB implementation
of the region growing IDEAL algorithm took 118 seconds.
The IDEAL algorithm requires the evaluation and least squares
inversion of a 6 × 4 matrix (with real entries) at every pixel,
at each iteration. On the other hand, the algebraic algorithm
requires only one evaluation of the SVD of a 4x4 matrix
to evaluate the phase value, followed by the least squares
inversion of a 3x2 matrix with complex entries. Since our
region-merging algorithm starts from a few regions rather than
individual pixels, it is very fast.
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Fig. 5. Fat water decomposition on a water phantom using gradient echo
acquisition. One of the source images of this slice is shown in Fig. 4-a. This
slice includes the jars containing corn-oil enclosed in the outer container. The
cross-section of two plastic combs can also be seen in the image. Since this
slice is the farthest from the ball, the magnetic field is relatively homogeneous.
In this case, all the algorithms gave good estimates.
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Fig. 6. Fat water decomposition on a water phantom using gradient echo
acquisition. One of the source images of this slice is shown in Fig. 4-b. This
slice only contains water. Close to the ball, the magnetic field is very in-
homogeneous. IDEAL (a) was initialized using zero field map; it converged
to the wrong solution. The region growing (b) and the algebraic decomposition
algorithms were able to converge to the correct solution. The water and fat
images were omitted since no noticeable swapping of intensity is present in
any of the images. The value of the signal is pretty small at the voxels where
IDEAL converged to the wrong solution.
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Fig. 7. Fat Water decomposition on a fat-water phantom using gradient
echo acquisition. This slice only contains water. One of the source images
of this slice is shown in Fig. 4-c. Close to the ball, the magnetic field is
very in-homogeneous. The IDEAL algorithm (a-c) was initialized using zero
field map; it converged to the wrong solution, resulting in the water and fat
signals being swapped in the decomposition. In regions close to the boundary
of the object, the region growing algorithm only has information from few
reliable pixels to perform polynomial fitting; the initialization is wrong thus
leading the convergence of the algorithm to wrong results (d-f). Note the error
propagating nature of the region growing algorithm; the wrong estimates are
spread to a larger region, along the rectangular spiral trajectory, than the
IDEAL algorithm. In contrast to both the standard algorithms, the algebraic
algorithm gave pretty good results, correctly identifying the fat and the water
signals (g-h). Note that there were a few isolated pixels close to the boundary,
where the region merging algorithm failed.

C. Experimental results with brain MR data

We consider two brain data-sets, one acquired using the
gradient echo scheme and the other using spin echo method.
We used δ = −π/6∆ for the spin echo and δ = 4π − π/6∆
and gradient echo acquisitions. The repetition times (TR) were
chosen as 1200 ms and 500ms respectively. The study was
approved by the Institutional Review Board of UIUC and
written informed consent was obtained from the volunteers
before the study began. The source images are shown in Fig.
4-d&e respectively.

We used the gradient echo acquisition to demonstrate the
region merging algorithm in Fig 8. We have adjusted the shim
settings to introduce a phase ramp in one direction. This results
in the phase map varying from approximately 100 Hz to −400
Hz over the image. The phase map derived by sorting the
solutions are shown in Fig. 8-a. Note that this is a good initial
guess, with the solutions different from the original values only
when there is a phase wrap on the wrong solution. The region
merging algorithm divided the image into multiple regions
(see Fig. 8-c) and then merged them to obtain Fig.8-d so as
to minimize the smoothness criterion. Note that the IDEAL
algorithm converged to the wrong solution in regions with
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large phase values (Fig.8-e), while the region growing IDEAL
was able to avoid this problem (Fig.8-f). In Fig 8.(g)-(h), we
compare the solutions derived by IDEAL and the algebraic
method at two different voxels. The blue curve indicates the
residual error [17]. It is obtained by plotting

C(ω) =
∣∣∣Aω

(
AT
ωAω

)−1
Aωb− b

∣∣∣2 (27)

as a function of the phase value ω. The matrix Aω is the one
specified in (16). The IDEAL algorithm converges to the local-
minimum of this curve. It is seen that in Fig 8.(h), the algebraic
algorithm picked both the feasible solutions. The correct one
from this set was selected by the region merging algorithm.
In contrast, IDEAL converged to the wrong feasible solution
at this pixel.

The spin echo data-set was processed using all the three
algorithms (IDEAL, region growing IDEAL, and algebraic)
and the results are shown in Fig. 9. Note that both IDEAL
and the region growing IDEAL resulted in wrong phase values
close to the sinus regions, indicated by the arrows. Also note
that the fat and the water regions are swapped. This region
corresponds to low signal as well as highly inhomogeneous
magnetic field. In contrast, the algebraic algorithm converged
to the correct solution, resulting in a smoother field map. The
isolated pixels with discontinuous phase map values, derived
using the algebraic method, correspond to pixels with low
signal. This is confirmed by the fact that water and fat signals
are not swapped at these pixels (see g&h).

VII. DISCUSSION

In MR brain imaging, the subcutaneous lipids from the
extra-cranial regions generates large signals, which result in
many artifacts. It is therefore a common practice to suppress
them using preparatory fat-suppression pulses. Unfortunately,
this also leads to the suppression of the useful signal, thus
affecting the performance of SNR-challenged schemes such
as MR spectroscopic imaging. An alternate approach is to
constrain the reconstructions using spatial and the field map
information, estimated using the Dixon scheme [4]. This is
in-fact the application that motivated the development of this
approach. However, the main utility of this scheme may be
in body imaging, where the field map variations will be
considerable [35], [36].

A limitation of the current implementation of the region
merging algorithm is its inability to resolve the ambigu-
ity on isolated voxels (separated from the main object).
It does not pose a major concern in practical applications
since these pixels are usually due to noise (see Fig. 7-i).
This limitation is due to the finite difference implementation
of the gradient, where only the difference between adja-
cent pixels is considered. This problem may be minimized
by using a criterion that uses smoothed gradients such as
C(p,q) =

∑
p

∣∣∇ (h⊗ (ωn(p) + 2π q(p)))
)∣∣2, where h is

a smooth, finitely supported filter (eg. truncated Gaussian).
This modification ensures that the evaluation of the smoothed
gradient involves more neighboring pixels and hence could
propagate the correct solution to isolated voxels.
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Fig. 9. Fat-water decomposition on SE acquired brain data. One of the
source images of this slice is shown in Fig. 4-e. Top row (a-c) indicates the
results obtained using the region growing IDEAL algorithm. The second row
denotes the decomposition using the IDEAL algorithm. The last row indicates
the decomposition using the proposed algebraic method. Note that both the
region growing and the IDEAL algorithm converged to the wrong solution
close to the sinus regions. This regults in fat and water signals being swapped.
In contrast, the algebraic method converges to the correct result. We used the
optimal shifts derived in [13]; i.e., (T = 2π/3∆ and δ = (4π − π/6)∆)
for gradient echo images and T = 2π/3∆ and δ = −π/6∆ for spin echo
images.

Since the algebraic method relies on γ = eiωT and η =
ei(ω+∆)T being on the unit circle, it is not possible to extend
this algorithm to damped exponentials to account for T2 or
T ∗2 effects. However, since the sampling step T that is chosen
in practice is often much smaller than T2 or T ∗2 , this is not
needed for most applications.

VIII. CONCLUSION

We introduced a general algorithm for the decomposition of
water, fat, and field map from Dixon MRI data. The proposed
algorithm is based on a modification of the harmonic retrieval
framework to accommodate for the frequency shift between
the chemical species. We estimated the field inhomogeneity
induced frequency shift as the common root of two quadratic
polynomials. Using the algebraic framework for the evaluation
of the greatest common divisor of polynomials, we developed
a computationally efficient algorithm. In contrast to traditional
analytical schemes, the algebraic scheme is general enough to
accommodate arbitrary equispaced echo-shift patterns, number
of metabolites and signal samples. Since the algebraic method
estimates all the feasible solutions as opposed to iterative
schemes that assume a single solution, it is not affected by the
convergence to the wrong solution. Experimental results show
that the algebraic scheme eliminated most of the problems
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Fig. 8. Illustration of the region merging process. One of the three GRE images of the slice is shown in Fig. 4-d. (a) indicates the phase map before region
merging. The pixels on which the solutions are unique are shown in (b). Note that most of the fat pixels are unique. This phase-map image is generated by
combining the unique solutions and the solution with a higher field map value (on the non-unique pixels.). Note that this map is close to the final solution
(shown in (d)), except for some regions. The region merging algorithm splits the image into simply connected regions with almost the same phase-map value
as shown in (c). The different regions are assigned different colors. These regions are merged using the approach discussed above so as to minimize the
criterion (13). The solution obtained using the IDEAL algorithm is shown in (e), while the one using region growing IDEAL is shown in (f). Note that the
region growing IDEAL gave almost the same result as the algebraic method in this case. The residual error and the solutions obtained using both algorithm
at the pixels indicated by the arrows in (e) are shown in (g)-(h). Pixel 1 is identified as a unique pixel by the algebraic method. The corresponding solution is
indicated by a red cross in (g). The IDEAL algorithm also converged to the same solution, marked by the black circle. Pixel 2 is identified by the algebraic
algorithm as a non-unique pixel. The corresponding solutions are marked by red crosses in (h). Here the low value of the field map led to the wrong solution
to wrap and appear as the one with the higher field-map value. However, the region-merging algorithm resolved this problem by picking the one with the
lower field-map. In contrast, IDEAL converged to the wrong solution at this pixel, although the correct solution is closer to the initialization. This is because
IDEAL is not a gradient based method; the value of ω in IDEAL at each iteration is not updated depending on the gradient of (27). Hence, the gradient of
(27) pointing in the correct direction at the initialization is not a sufficient condition for IDEAL to converge to the correct solution. IDEAL converges to the
correct solution on this pixel, only if the initialization is below −0.61.

associated with traditional schemes without compromising the
noise performance.
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