SCADA Data Mining and IT Needs to Improve Plant Operation and Downtime

AWEA Wind Power Asset Management Workshop
Gordon Randall
Global Energy Concepts, LLC
116 John Street
Lowell, MA 01852
978-275-3880
grandall@globalenergyconcepts.com

Adopted for Wind Power Management class
http://www.icaen.uiowa.edu/~ie_155/
Andrew Kusiak
Intelligent Systems Laboratory
2139 Seamans Center
The University of Iowa
Iowa City, Iowa 52242 – 15227
andrew-kusiak@uiowa.edu
Tel: 319-335-5934 Fax: 319-335-5669
http://www.icaen.uiowa.edu/~ankusiak

SCADA Defined

- Supervisory Control and Data Acquisition system
- Actual definitions and descriptions can vary – some skip the “supervisory control” part and just handle the data side
- Projects need data analysis, not just acquisition

SCADA Data Mining and IT Needs to Improve Plant Operation and Downtime

AWEA Wind Power Asset Management Workshop
Gordon Randall
Global Energy Concepts, LLC
116 John Street
Lowell, MA 01852
978-275-3880
grandall@globalenergyconcepts.com

Adopted for Wind Power Management class
http://www.icaen.uiowa.edu/~ie_155/
Andrew Kusiak
Intelligent Systems Laboratory
2139 Seamans Center
The University of Iowa
Iowa City, Iowa 52242 – 15227
andrew-kusiak@uiowa.edu
Tel: 319-335-5934 Fax: 319-335-5669
http://www.icaen.uiowa.edu/~ankusiak

SCADA Defined

- Supervisory Control and Data Acquisition system
- Actual definitions and descriptions can vary – some skip the “supervisory control” part and just handle the data side
- Projects need data analysis, not just acquisition

Three Levels of SCADA Systems

- Systems focused on site operations
 - Primarily systems provided by turbine manufacturers
- Systems focused on project-level analysis
 - Primarily small-scale, third-party systems
- Systems designed for enterprise-level, fleet-wide analysis
 - Almost exclusively third-party systems, especially when handling multiple turbine types

What They're Generally Best At (Although All Systems Vary)

<table>
<thead>
<tr>
<th>Task</th>
<th>Manufacturer's Project SCADA</th>
<th>Third-party Project SCADA</th>
<th>Enterprise SCADA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day-to-day project operations</td>
<td>Best</td>
<td>Good</td>
<td>Fair</td>
</tr>
<tr>
<td>Month-to-month project performance analysis</td>
<td>Fair</td>
<td>Best</td>
<td>Good</td>
</tr>
<tr>
<td>Evaluation and comparison of entire wind portfolio</td>
<td>Poor</td>
<td>Fair</td>
<td>Best</td>
</tr>
</tbody>
</table>
Why Use Third-Party Systems?

- Provides common system and interface when mixing turbine manufacturers
- Generally more customizable for reporting and analysis purposes
- Provides independent measurements and analysis – the system calculating availability will not be designed by the people who have to pay for low availability
- Frequently more functionality and data storage

Why Not Use Third-Party Systems?

- Often redundant to some extent, if turbine manufacturer requires use of their SCADA for O&M/warranty purposes
- Can be more difficult to get full access to systems for data collection purposes
- Value of analysis tools is limited by quality of data going in
- Cost (perceived or actual)

Hardware and Software Needs – On-Site System

- Most manufacturer’s systems are turnkey installations
 - Controller/interface at each turbine or other monitoring point
 - Fiber optic cabling or wireless communications across project
 - Centralized server at operations building

Hardware and Software Needs – Telecommunications

- Security important for control: crucial that unauthorized users not control turbines!
- High-speed, reliable Internet access required for efficient data transmittal
 - Typically, T1 speed and reliability necessary
 - DSL/cable problematic due to speed/availability issues
 - May not be cheap to get wiring to remote sites
Telecommunications (Continued)

- Project-specific needs:
 - Data transmittal to utility
 - Data transmittal to forecasting services
 - Internal presentation
 - Public presentation

Hardware and Software Needs – Off-Site/Enterprise Systems

- Lots of Storage
 - Data need to be readily available in order to be useful
 - Desktop-type database systems generally inadequate for management of long-term data
 - Large project can generate many GBs of data/year – multiply by several projects and several years
 - Data backup system is (of course) important

What Can be Learned by Mining SCADA Data?

- Verification of turbine and plant performance
- Assessment/prediction of failures
 - Predictive maintenance of large components (including condition monitoring)
 - Evaluation of faults and minor components
- Quantification of effects of problems and prioritization of efforts to solve problems
- Warranty claim support

Objective: Optimize Operations to Maximize Profit

- … not turbine availability, energy production, or project revenue, if at the expense of cost or effort
- On-site operations are frequently driven by reactions to short-term problems and may not reflect the best overall strategy
Condition Monitoring

- The more data you have, the easier it is to discover impending problems
 - Comparison of measurements across a turbine fleet
 - Comparison of measurements over time
- Modern turbines have huge numbers of sensors for trend analysis
- Interpretation can be tricky! Weighing indications of potential failure vs. replacement cost is tricky
- Use of full condition monitoring systems (e.g., vibration analysis)

Fault Analysis: Overheating/Power Regulation

Faults vs. Power Curve

Fault Analysis: Pitch System Problems

Downtime vs. Time of Day

- Cost-effectiveness of nighttime and weekend fault response plans
- Better assessment of lost revenue, considering time-of-day pricing
Fault Recovery Time

- Are 30-minute faults more realistically 60-minute faults?
- Is this being accurately considered in availability calculations?
- Would it be more cost-effective to "ride through" faults with lower power output?

Environmental Considerations (Examples)

- Blade soiling assessment
 - Cost of reduced power output vs. cost of blade washing
- Site access restrictions
 - Cost of lost power vs. cost of snow removal
- Heated control anemometry
 - Cost of downtime due to frozen sensors vs. cost of changes to sensor types

Component Failure Rate Analysis

- SCADA can provide supporting data for component failure predictions and/or serial defect analysis
 - Tie SCADA to site maintenance logs/parts inventory (e.g., CMMS = Computerized Maintenance Mgt System)
 - Comparative studies of subcomponents from different vendors
- Long data history is (again) very important
 - Major components should have zero failures until late in project life
 - By the time there are enough failures to make predictions, it may be too late

Warranty Claims

- Is availability being calculated accurately?
 - Turbines "paused" or otherwise incorrectly included?
 - Wrong numerator or denominator in availability calculations?
 - If warranty is energy-based, not time-based, is the lost energy being correctly accounted for?

<table>
<thead>
<tr>
<th>Turbine</th>
<th>kWh</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>T01</td>
<td>10908</td>
<td>100.0%</td>
</tr>
<tr>
<td>T02</td>
<td>10584</td>
<td>99.8%</td>
</tr>
<tr>
<td>T03</td>
<td>0</td>
<td>100.0%</td>
</tr>
<tr>
<td>T04</td>
<td>11304</td>
<td>100.0%</td>
</tr>
<tr>
<td>T05</td>
<td>540</td>
<td>92.4%</td>
</tr>
<tr>
<td>T06</td>
<td>10728</td>
<td>100.0%</td>
</tr>
</tbody>
</table>
Warranty Claims (Continued)

- Analysis of catastrophic failures
 - If anything unusual happened prior to failure, what?
 - If nothing happened, that can be even more valuable

Conclusions

- Turbines generate both energy and data – don’t waste either
- Relying only on turbine manufacturer’s SCADA can give a limited view
- Getting the best value from the data requires real analysis – no SCADA hands you all of the answers