2.57 A 3-m-wide, 8-m-high rectangular gate is located at the end of a rectangular passage that is connected to a large open tank filled with water as shown in Fig. P2.57. The gate is hinged at its bottom and held closed by a horizontal force, \(F_H \), located at the center of the gate. The maximum value for \(F_H \) is 3500 kN. (a) Determine the maximum water depth, \(h \), above the center of the gate that can exist without the gate opening. (b) Is the answer the same if the gate is hinged at the top? Explain your answer.

FIGURE P2.57

For gate hinged at bottom:

\[
\sum M_H = 0
\]

so that

\[
\begin{align*}
(4 \text{m}) F_H &= \ell F_R \quad \text{(see figure)} \quad (1) \\
F_R &= \Delta h_c A = \left(9.80 \frac{\text{kN}}{\text{m}^3}\right)(h)(3 \text{m} \times 8 \text{m}) \\
&= (9.80 \times 24 h_c) \Delta h_c \text{kN}
\end{align*}
\]

\[
\begin{align*}
y_R &= \frac{\ell \times c}{y_c A} + y_c = \frac{1}{h_c} \left(3 \text{m} \times 8 \text{m}\right)^2 + h_c +\frac{h}{h_c} \\
&= \frac{5.33}{h_c} + h
\end{align*}
\]

Thus,

\[
\ell (\text{m}) = h + 4 - \left(\frac{5.33}{h_c} + h \right) = 4 - \frac{5.33}{h_c}
\]

and from Eq. (1)

\[
(4 \text{m})(3500 \text{ kN}) = (4 - \frac{5.33}{h_c})(9.80 \times 24)(h_c) \text{ kN}
\]

so that

\[
\frac{1}{h_c} = 16.2 \text{ m}
\]

(cont')
For gate hinged at top

\[\sum M_H = 0 \]

so that

\[(4 \text{ m}) F_H = l_1 F_R \quad \text{(see figure)} \] (1)

where

\[l_1 = y_F - (h - 4) = \left(\frac{5.33}{h} + 4 \right) - (h - 4) \]

\[= \frac{5.33}{h} + 4 \]

Thus, from Eq. (1)

\[(4 \text{ m})(3500 \text{ kN}) = \left(\frac{5.33}{h} + 4 \right)(9.80 \times 24)(h) \text{ kN} \]

and

\[h = 13.5 \text{ m} \]

Maximum depth for gate hinged at top is less than maximum depth for gate hinged at bottom.