1. A jet of alcohol (ρ = 788.42 kg/m³) strikes the vertical plate in Fig. 1. The (absolute) pressure \(p_1 = 760 \text{ kPa} \) at section 1. Find (a) the alcohol jet velocity \(V_2 \) at section 2 and (b) the force \(F \) required to hold the plate stationary. For part (a), assume there are no losses in the nozzle flow.

2. Water flows through a vertical pipe, as is indicated in Fig. 2. The vertical distance \(H = 50 \text{ cm} \) between the two points marked with dots at the pipe and the mercury (\(SG = 13.6 \)) manometer height \(h = 5 \text{ cm} \) due to the pressure difference between the two points. (a) What is the head loss \(h_L \) between the two points? (b) Is the flow up or down in the pipe? Explain.

3. Consider a steady, incompressible, parallel, laminar flow of a viscous fluid falling between two infinite, vertical walls as shown in Fig. 3. The distance between the walls is \(h \), and gravity acts in the negative \(z \)-direction (\(g_z = -g \), downward in the figure). There is no forced pressure (\(\partial p / \partial z = 0 \)) driving the flow – the fluid falls by gravity alone. Starting from the following Navier-Stokes equation,

\[
\rho \left(\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} \right) = - \frac{\partial p}{\partial z} + \rho g_z + \mu \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right)
\]

(a) drive an expression for \(w \) and (b) calculate the centerline velocity (\(w \) along the \(x = 0 \) line) if \(h = 2 \text{ mm} \) and the fluid is glycerin at 20°C (\(\rho = 1,260 \text{ kg/m}^3 \) and \(\mu = 1.49 \text{ N-s/m}^2 \)). Assume the flow is purely two-dimensional (\(v = 0 \) and \(\partial / \partial y = 0 \)) and parallel to the walls (\(u = 0 \)).

4. Liquid flows out of a hole in the bottom of a tank as in Fig. 4. Consider the case in which the hole is very small compared to the tank (\(d \ll D \)). Experiments reveal that average jet velocity \(V \) is nearly independent of \(d, D, \rho, \) or \(\mu \). In fact, for a wide range of these parameters, it turns out that \(V \) depends only on liquid surface height \(h \) and gravitational acceleration \(g \). (a) Using dimensional analysis, generate a dimensionless relationship for \(V \) as a function of \(g \) and \(h \). (b) If the liquid surface height \(h \) is doubled, all else being equal, by what factor will the average jet velocity \(V \) increase?