Chapter 1 INTRODUCTION AND BASIC CONCEPTS

1. Fluids and no-slip condition
 - Fluid: a substance that deforms continuously when subjected to shear stresses
 - No-slip condition: no relative motion between fluid and boundary

2. Basic units

<table>
<thead>
<tr>
<th>Dimension</th>
<th>SI unit</th>
<th>BG unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity V</td>
<td>L/t</td>
<td>m/s</td>
</tr>
<tr>
<td>Acceleration a</td>
<td>L/t^2</td>
<td>m/s2</td>
</tr>
<tr>
<td>Force F</td>
<td>ML/t^2</td>
<td>N (Kg \cdot m/s2)</td>
</tr>
<tr>
<td>Pressure p</td>
<td>F/L^2</td>
<td>Pa (N/m2)</td>
</tr>
<tr>
<td>Density ρ</td>
<td>M/L^3</td>
<td>Kg/m3</td>
</tr>
<tr>
<td>Internal energy u</td>
<td>FL/M</td>
<td>1/Kg (N \cdot m/kg)</td>
</tr>
</tbody>
</table>

3. Weight and mass
 - $W(N) = m(Kg) \cdot g$, where $g = 9.81$ m/s2
 - $W(lbf) = m(slug) \cdot g$, where $g = 32.2$ ft/s2
 - 1 N = 1 Kg \times 1 m/s2
 - 1 lbf = 1 slug \times 1 ft/s2
 - 1 slug = 32.2 lbm (weighs 32.2 lb under standard gravity)

4. Properties involving mass or weight of fluid
 - Specific weight $\gamma = \rho g$ (N/m3)
 - Specific gravity $SG = \gamma/\gamma_{water}$

5. Viscosity
 - Newtonian fluid: $\tau = \mu \dot{\theta} = \mu \frac{du}{dy}$
 - τ Shear stress (N/m2)
 - $\dot{\theta} = \frac{\delta \theta}{\delta t} = \frac{1}{\delta t} \left(\frac{\delta u \delta t}{\delta y} \right)$
 - μ Coefficient of viscosity (Ns/m2)
 - $\nu = \mu/\rho$ Kinematic viscosity (m2/s)
 - Non-Newtonian fluid: $\tau \propto \left(\frac{du}{dy} \right)^n$

 Ex) Couette flow
 $$ u(y) = \frac{U}{h} y, \tau = \mu \frac{du}{dy} = \mu \frac{U}{h} $$
6. Vapor pressure and cavitation
- When the pressure of a liquid falls below the vapor pressure it evaporates, i.e., changes to a gas.
- If the pressure drop is due to fluid velocity, the process is called cavitation.
- Cavitation number

\[C_a = \frac{p - p_\infty}{1/2 \rho V_\infty^2} \]

- \(C_a < 0 \) implies cavitation

7. Surface tension
- Surface tension force

\[F_\sigma = \sigma \cdot L \]

- \(F_\sigma \) = line force with direction normal to the cut
- \(\sigma \) = surface tension [N/m]
- \(L \) = length of cut through the interface

Chapter 2 PRESSURE AND FLUID STATICS

1. Absolute pressure, Gage pressure, and Vacuum

- \(p_A > p_a \)
- \(p_g = p_A - p_a \) = gage pressure
- \(p_A < p_a \)
- \(p_{vac} = -p_g = p_a - p_A \) = vacuum pressure

\(p_a = \text{atmospheric pressure} = 101.325 \text{ kPa} \)
2. Pressure variation with elevation

- For a static fluid, pressure varies only with elevation \(z \) and is constant in horizontal \(x, y \) planes.
 \[
 \frac{\partial p}{\partial x} = 0, \quad \frac{\partial p}{\partial y} = 0, \quad \frac{\partial p}{\partial z} = -\rho g = -\gamma
 \]

- If the density of fluid is constant,
 - \(p + \gamma z = \text{constant (piezometric pressure)} \)
 - \(\frac{p}{\gamma} + z = \text{constant (piezometric head)} \)
 - \(p_{z=0} = 0 \) gage, \(p = -\gamma z \) : increase linearly with depth, decrease linearly with height

3. Pressure measurements (Manometry)

1) U-tube manometer

- \(p_1 + \gamma_m \Delta h - \gamma \ell = p_4 \)
- \(p_4 = \gamma_m \Delta h - \gamma \ell \) \(gage \)
- \(= \gamma_{water} (SG_m \Delta h - SG \ell) \)

2) Differential U-tube manometer

- \(p_1 + \gamma_f \ell_1 - \gamma_m \Delta h - \gamma_f (\ell_2 - \Delta h) = p_2 \)
- \(p_1 - p_2 = \gamma_f (\ell_2 - \ell_1) + (\gamma_m - \gamma_f) \Delta h \)
- \(\left(\frac{p_1}{\gamma_f} + \ell_1 \right) - \left(\frac{p_2}{\gamma_f} + \ell_2 \right) = (\gamma_m/\gamma_f - 1) \Delta h \)

\(\text{difference in piezometric head} \)

- If fluid is a gas \(\gamma_f \ll \gamma_m : p_1 - p_2 = \gamma_m \Delta h \)
- If fluid is liquid & pipe horizontal \(\ell_1 = \ell_2 \):
 - \(p_1 - p_2 = (\gamma_m - \gamma_f) \Delta h \)
4. Hydrostatic forces on plane surfaces

1) Horizontal surfaces

- $F = pA$
- Line of action is through centroid of A, i.e., $(x_{cp}, y_{cp}) = (\bar{x}, \bar{y})$

2) Inclined surfaces

- $F = \bar{p}A$
 - $\bar{p} = \gamma \sin \alpha \bar{y}$: pressure at centroid of A
 - $\bar{y} = \frac{1}{A} \int y \, dA$: 1st moment of area
- Magnitude of resultant hydrostatic force on plane surface is product of pressure at centroid of area and area of surface
- Center of pressure
 - $y_{cp} = \bar{y} + \frac{I}{\bar{y}A}$
 - $x_{cp} = \frac{I_{xy}}{\bar{y}A} + \bar{x}$

I : moment of inertia with respect to horizontal centroidal axis
For plane surfaces with symmetry about an axis normal to 0-0, $I_{xy} = 0$ and $x_{cp} = \bar{x}$
5. Hydrostatic forces on curved surfaces

\[p = \gamma h \]

\[F = - \oint_{A} p n \, dA \]

\[h \] - distance below free surface

- \(F_x = - \int_{A_x} p \, dA_x \)
 \((dA_x = n \cdot i \mathbf{A} : \text{projection of } ndA \text{ onto plane } \perp \text{ to } x\text{-direction}) \)

- \(F_y = - \int_{A_y} p \, dA_y \)
 \((dA_y = n \cdot j \mathbf{A} : \text{projection of } ndA \text{ onto plane } \perp \text{ to } y\text{-direction}) \)

- \(F_z = - \int_{A_z} p \, dA_z = \gamma \Psi = \text{weight of fluid above surface } A \)

6. Buoyancy

- \(F_B = F_{V_2} - F_{V_1} = \rho g \Psi \)
- Fluid weight equivalent to body volume \(\Psi \)
- Line of action is through centroid of \(\Psi = \text{center of buoyancy} \)

7. Stability

1) Immersed bodies

\[\sum F_y = 0 \quad \text{and} \quad \sum M = 0. \]

\[\sum M = 0 \] requires \(C = G \) and the body is neutrally stable

- If \(C \) is above \(G \): stable (righting moment when heeled)
- If \(G \) is above \(C \): unstable (heeling moment when heeled)
2) Floating bodies
- The center of buoyancy generally shifts when the body is rotated
- Metacenter M: The point of intersection of the lines of action of the buoyant force before and after heel

\[GM = \frac{I_{oo}}{V} - CG \]
- GM: metacentric height
- \(I_{oo} \) = moment of inertia of waterplane area about centerplane axis
- GM > 0: stable (M is above G)
- GM < 0: unstable (G is above M)

8. Fluids in rigid-body motion
- If no relative motion between fluid particles

\[\nabla p = \rho \left(g - a \right) \]
- For rigid body translation: \(a = a_x \hat{i} + a_z \hat{k} \)
 \[\nabla p = -\rho \left[a_x \hat{i} + (g + a_z) \hat{k} \right] \]
 \[\frac{\partial p}{\partial x} = -\rho a_x \]
 - \(a_x < 0 \), \(p \) increase in +x
 - \(a_x > 0 \), \(p \) decrease in +x
 \[\frac{\partial p}{\partial z} = -\rho (g + a_z) \]
 - \(a_z > 0 \), \(p \) decrease in +z
 - \(a_z < 0 \) and \(|a_z| < g \), \(p \) decrease in +z but slower than \(g \)
 - \(a_z < 0 \) and \(|a_z| > g \), \(p \) increase in +z

\[p = \rho \dot{G} s + \text{constant} \Rightarrow p_{gage} = \rho \dot{G} s \]
- \(G = a_x^2 + (g + a_z)^2 \)
- \(\hat{s} \) = unit vector in direction normal of \(\nabla p \)
- For rigid body rotation: \(a = -r \Omega^2 \hat{e}_r \)
 \[\nabla p = -\rho g \hat{k} + \rho r \Omega^2 \hat{e}_r \]
 \[\frac{\partial p}{\partial r} = \rho r \Omega^2 \quad \frac{\partial p}{\partial z} = -\rho g \quad \frac{\partial p}{\partial \theta} = 0 \]
 \[p = \frac{\rho}{2} r^2 \Omega^2 - \rho g z + \text{constant} \] or \(\frac{\rho}{\gamma} + z - \frac{\gamma^2}{2g} = \text{constant} (V = r \Omega) \)
 \[z = \frac{p_0 - p}{\rho g} + \frac{r^2 \Omega^2}{2g} = a + br^2 : \text{curves of constant pressure} \ (p_0 : \text{pressure at } (r,z)=(0,0)) \]
Chapter 3 BERNOULLI EQUATION

1. Flow patterns
 - Streamline: a line that is everywhere tangent to the velocity vector at a given instant
 - Pathline: the actual path traveled by a given fluid particle
 - Streakline: the locus of particles which have earlier passed through a particular point

2. Streamline coordinates
 - Velocity: $\mathbf{V}(x, t) = v_s(x, t)\hat{s}$
 - Acceleration:
 \[a = \left(\frac{\partial v_s}{\partial t} + v_s \frac{\partial v_s}{\partial s} \right) \hat{s} + \left(\frac{\partial v_n}{\partial t} + \frac{v_s^2}{R} \right) \hat{n} \]
 - $\frac{\partial v_s}{\partial t}$ = local a_s in \hat{s} direction
 - $\frac{\partial v_n}{\partial t}$ = local a_n in \hat{n} direction
 - $v_s \frac{\partial v_s}{\partial s}$ = convective a_s due to spatial gradient of \mathbf{V}
 - $\frac{v_s^2}{R}$ = convective a_n due to curvature ψ : centrifugal acceleration
 - R : the radius of curvature of the streamline

3. Bernoulli equation
 - Euler equation: $\rho a = \nabla (p + \gamma z)$
 - Along streamline
 \[\frac{v_s^2}{2} + \frac{p_1}{\rho} + g z_1 = \text{constant} \]
 or
 \[\frac{v_{s1}^2}{2} + \frac{p_1}{\rho} + g z_1 = \frac{v_{s2}^2}{2} + \frac{p_2}{\rho} + g z_2 \]
 - Across streamline
 \[\int \frac{v_s^2}{R} \, dn + \frac{p}{\rho} + g z = \text{constant} \]
 - Assumptions
 - Inviscid flow
 - Steady flow
 - Incompressible flow
 - Flow along a streamline
4. Applications of Bernoulli equation

1) Stagnation tube
 - \[p_1 + \rho \frac{v_1^2}{2} = p_2 + \rho \frac{v_2^2}{2} \]
 \[z_1 = z_2, p_1 = \gamma d, V_2 = 0, p_2 = \gamma (l + d) \]
 - \[V_1 = \sqrt{\frac{2}{\rho} (p_2 - p_1)} = \sqrt{\frac{2}{\rho} \gamma l} = \sqrt{2 gl} \]

2) Pitot tube
 - \[\frac{p_1}{\gamma} + \frac{v_1^2}{2g} + z_1 = \frac{p_2}{\gamma} + \frac{v_2^2}{2g} + z_2 \]
 \[V_1 = 0, h = \frac{p}{\gamma} + z \]
 - \[V_2 = \sqrt{2g(h_1 - h_2)} \]
 \[h_1 - h_2 \text{ from manometer or pressure gage} \]

3) Simplified continuity equation
 - Volume flow rate: \[Q = VA \]
 - Mass flow rate: \[\dot{m} = \rho Q = \rho VA \]
 - Conservation of mass: \[\rho_1 V_1 A_1 = \rho_2 V_2 A_2 \]
 - For incompressible flow (\(\rho = \text{constant} \)): \[V_1 A_1 = V_2 A_2 \text{ or } Q_1 = Q_2 \]

4) Flow rate measurement
 - If the flow is horizontal \((z_1 = z_2) \), steady, inviscid, and incompressible, \[p_1 + \frac{1}{2} \rho V_1^2 = p_2 + \frac{1}{2} \rho V_2^2 \]
 - If velocity profiles are uniform at sections (1) and (2), \[Q = V_1 A_1 = V_2 A_2 \]
 - Flow rate is, \[Q = A_2 \sqrt{\frac{2(p_1 - p_2)}{\rho[1-(A_2/A_1)^2]}} \]

Ex) Venturi meter
Chapter 4 FLUIDS KINEMATICS

1. Velocity and description Methods
 • Lagrangian: keep track of individual fluids particles
 \[V_p = u_p \hat{i} + v_p \hat{j} + w_p \hat{k} \]
 • Eulerian: focus attention on a fixed point in space
 \[V = V(x, t) = u \hat{i} + v \hat{j} + w \hat{k} \]

2. Acceleration and material derivatives
 • Lagrangian:
 \[a_p = \frac{dV_p}{dt} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k} \]
 \[a_x = \frac{du_p}{dt} \quad a_y = \frac{dv_p}{dt} \quad a_z = \frac{dw_p}{dt} \]
 • Eulerian:
 \[a = \frac{DV}{Dt} = \frac{\partial V}{\partial t} + (V \cdot \nabla)V = a_x \hat{i} + a_y \hat{j} + a_z \hat{k} \]
 where,
 \[\nabla = \frac{\partial}{\partial x} \hat{i} + \frac{\partial}{\partial y} \hat{j} + \frac{\partial}{\partial z} \hat{k} : \text{ gradient operator} \]
 \[a_x = \frac{Du}{Dt} = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} \]
 \[a_y = \frac{Dv}{Dt} = \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} \]
 \[a_z = \frac{Dw}{Dt} = \frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} \]
 • \(\frac{\partial v}{\partial t} \) = local or temporal acceleration. Velocity changes with respect to time at a given point.
 • \((V \cdot \nabla)V \) = convective acceleration. Spatial gradients of velocity
 • Material (substantial) derivative
 \[\frac{D}{Dt} = \frac{\partial}{\partial t} + u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} + w \frac{\partial}{\partial z} \]
3. Flow classification
- One-, Two-, and Three-dimensional flow
- Steady vs. Unsteady flow
- Incompressible and Compressible flow
- Viscous and Inciscid flow
- Rotational vs. Irrotational flow
- Laminar vs. Trubulent viscous flow
- Internal vs. External flow
- Separated vs. Unseparated flow

4. Reynolds Transport Theorem (RTT)
\[
\frac{dB_{sys}}{dt} = \frac{\partial}{\partial t} \int_{CV} \beta \rho d\mathcal{V} + \int_{CS} \beta \rho V_R \cdot n dA
\]

Special Cases:
- Non-deforming CV moving at constant velocity: \(\frac{dB_{sys}}{dt} = \int_{CV} \frac{\partial}{\partial t} (\beta \rho) d\mathcal{V} + \int_{CS} \beta \rho V_R \cdot n dA \)
- Fixed CV: \(\frac{dB_{sys}}{dt} = \int_{CV} \left[\frac{\partial}{\partial t} (\beta \rho) + \nabla \cdot (\beta \rho \mathbf{V}) \right] d\mathcal{V} \)
- Steady flow: \(\frac{\partial}{\partial t} = 0 \)
- Uniform flow across discrete CS (steady or unsteady):
 \[\int_{CS} \beta \rho V \cdot n dA = \sum_{CS} \beta \rho V \cdot n dA_{(-inlet,+outlet)} \]

5. Continuity equation
\[
\frac{dM}{dt} = 0 = \frac{\partial}{\partial t} \int_{CV} \rho d\mathcal{V} + \int_{CS} \rho V_R \cdot n dA
\]

Simplifications:
- Steady flow: \(- \frac{\partial}{\partial t} \int_{CV} \rho d\mathcal{V} = 0\)
- \(\mathcal{V} = \) constant over discrete \(dA \) (flow sections):
 \(\int_{CS} \rho \mathcal{V} \cdot n dA = \sum_{CS} \rho \mathcal{V} \cdot A \)
- Incompressible fluid (\(\rho = \) constant):
 \(\int_{CS} \rho \mathcal{V} \cdot A = - \frac{\partial}{\partial t} \int_{CV} \rho d\mathcal{V} \) (conservation of volume)
- Steady One-dimensional flow in a conduit:
 \(\sum_{CS} \rho \mathcal{V} \cdot A = 0, -\rho_1 V_1 A_1 + \rho_2 V_2 A_2 = 0, \) for \(\rho = \) const \(Q_1 = Q_2 \)