When a hydrometer (see Fig. P2.105 and Video V2.9) having a stem diameter of 0.30 in. is placed in water, the stem protrudes 3.15 in. above the water surface. If the water is replaced with a liquid having a specific gravity of 1.10, how much of the stem would protrude above the liquid surface? The hydrometer weighs 0.042 lb.

When the hydrometer is floating, its weight, \(W \), is balanced by the buoyant force, \(F_B \). For equilibrium,

\[
\sum F_{\text{vertical}} = 0
\]

Thus, for water,

\[
F_B = W
\]

\[
(\delta_{H_2O}) \frac{V}{V_1} = W
\]

where \(V_1 \) is the submerged volume. With the new liquid,

\[
(\text{SG}) (\delta_{H_2O}) \frac{V_2}{V_1} = W
\]

Combining Eqs. (1) and (2) with \(W \) constant,

\[
(\delta_{H_2O}) \frac{V_1}{V_2} = (\text{SG})(\delta_{H_2O}) \frac{V_1}{V_2}
\]

and

\[
V_2 = \frac{V_1}{\text{SG}}
\]

(con't)
From Eq. (1)

\[V_1 = \frac{2V}{\pi} = \frac{0.042 \text{ in.}^3}{62.4 \text{ in.}^3} = 6.73 \times 10^{-4} \text{ ft}^3 \]

so that from Eq. (3)

\[V_2 = \frac{6.73 \times 10^{-4} \text{ ft}^3}{1.10} = 6.12 \times 10^{-4} \text{ ft}^3 \]

Thus, \(V_1 - V_2 = (6.73 - 6.12) \times 10^{-4} \text{ ft}^3 = 0.61 \times 10^{-4} \text{ ft}^3 \)

To obtain this difference the change in length, \(\Delta l \), is

\[\left(\frac{\pi}{4} \right) (0.30 \text{ in.})^2 \Delta l = (0.61 \times 10^{-4} \text{ ft}^3)(1728 \text{ in.}^3) \]

\[\Delta l = 1.49 \text{ in.} \]

With the new liquid the stem would protrude

3.15 in. + 1.49 in. = 4.64 in. above the surface