Farkas' Lemma

Let \(A \in \mathbb{R}^{m \times n} \), i.e., \(A \) is an \(m \times n \) matrix, \(b \in \mathbb{R}^m \), \(x \in \mathbb{R}^n \), \(y \in \mathbb{R}^m \).

The following statements are equivalent:

1. \(y^T A \leq 0 \Rightarrow y^T b \leq 0 \)
2. \(\exists x \) such that \(Ax = b \), \(x \geq 0 \)

If \(y = 0 \) is optimal for \(\text{D} \), then by LP duality theory, \(\text{P} \) is feasible (with LP value 0), proving that \(1 \Rightarrow 2 \).

Suppose that \(Ax = b \) for some \(x \geq 0 \), and \(y^T A \leq 0 \) for some \(y \).

Then \(y^T A \leq 0 = y^T A x \leq 0 = y^T b \leq 0 \)

proving that \(2 \Rightarrow 1 \).

\[\text{QED} \]

Proof

Consider the primal/dual LP pair:

\(\text{P} \) Minimize \(0x \)
subject to \(A x = b \)
\(x \geq 0 \)

\(\text{D} \) Maximize \(y^T b \)
subject to \(A^T y \leq 0 \)
\[i.e., \ y^T A \leq 0 \]

Problem \(\text{D} \) is feasible (e.g., let \(y = 0 \), for which the objective \(y^T b \) is zero.)

If statement \(1 \) is true, i.e., \(y^T A \leq 0 \Rightarrow y^T b \leq 0 \)
then \(y = 0 \) must be optimal for problem \(\text{D} \).

GEOMETRIC ILLUSTRATION OF FARKAS' LEMMA

Let \(A = \begin{bmatrix} 1 & 3 & 3 \\ 3 & 2 & 1 \end{bmatrix} \), \(b = \begin{bmatrix} 4 \\ 4 \end{bmatrix} \)

The columns of \(A \) are points (vectors) in \(\mathbb{R}^2 \)

\[A^1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix} , A^2 = \begin{bmatrix} 3 \\ 2 \end{bmatrix} , A^3 = \begin{bmatrix} 3 \\ 1 \end{bmatrix} , b = \begin{bmatrix} 4 \\ 4 \end{bmatrix} \]

\[\text{(requirements space)} \]

For example,

\[b = \begin{bmatrix} 4 \\ 4 \end{bmatrix} = 1 A^1 + 0 A^2 + 1 A^3 \]
\[= \frac{4}{7} A^1 + \frac{4}{7} A^2 + 0 A^3 \]
\[= \frac{11}{14} A^1 + \frac{4}{7} A^2 + \frac{1}{2} A^3 \]

.... etc.

The system \(Ax = b \) has a solution if & only if \(b \) lies in the cone generated by \(A^1, A^2, \) and \(A^3 \)

Let \(H_j \) be the hyperplane (a line in \(\mathbb{R}^2 \)) through the origin, orthogonal to \(A_j \), and let \(H_i \) be the closed halfspace on the side of \(H_j \) not containing \(A_i \)
Farkas' Lemma

\[y^T A^j = 0 \iff y \perp A^j \]
\[\iff y \in H_j \]

Also,
\[y^T A^j \leq 0 \iff y \in H^*_j \]
Therefore,
\[y^T A \leq 0 \iff y \in \cap H_j \]
(the intersection of the half-spaces, shaded above)

\[\text{EXAMPLE 1} \]
\[b = \begin{bmatrix} 4 \\ 4 \end{bmatrix} \]

Note that \(b \) is in the cone generated by \(A^1, A^2, \text{and } A^3 \)
and that \(\cap H^*_j \subseteq H^*_5 \)

\[\text{APPLICATION TO NONLINEAR PROGRAMMING} \]

Consider the problem
\[
\begin{align*}
\text{Minimize } & f(x) \\
\text{subject to } & g_i(x) \leq 0, i = 1, 2, \ldots, m
\end{align*}
\]

Denote
\[b = -\nabla f(x^*) \]
\[A^1 = \nabla g_i(x^*) \]
\[y = d \quad \text{(direction vector)} \]
\[x_i = \lambda_i \text{ for } i \in I \equiv \{ i \mid g_i(x^*) = 0 \} \]
(Lagrange multiplier)
\(\cap \) (index set of tight constraints)

Likewise, for a given \(b \), let \(H_b \) - hyperplane through the origin, orthogonal to \(b \), and \(H^*_b \) - closed halfspace on side of \(H_b \), not containing \(b \).

Then the statement
\[y^T A \leq 0 \iff y^T b \leq 0 \]
simply says that
\[\cap H^*_j \subseteq H^*_5 \]

\[\text{EXAMPLE 2} \]
\[b = \begin{bmatrix} 4 \\ 1 \end{bmatrix} \]

In this case, the vector \(b \) does not lie in the cone generated by \(A \), nor does \(\cap H^*_j \) lie entirely in the closed half-space \(H^*_5 \)

\[\text{points in } \cap H^*_j \text{ which don't lie in } H^*_5 \]

\[\text{Farkas' Lemma} \]

1. \[y^T A \leq 0 \iff y^T b \leq 0 \]
2. \[\exists x \text{ such that } A x = b, x \geq 0 \]

are equivalent statements

That is,
1. \[d^T \nabla g_i(x^*) \leq 0 \forall i \in I \Rightarrow -d^T \nabla f(x^*) \leq 0 \]
2. \[\exists \lambda_i \geq 0 \text{ such that } \sum_{i \in I} \lambda_i \nabla g_i(x^*) = -\nabla f(x^*) \]

are equivalent statements

If a constraint is not tight, then any direction is feasible with respect to that constraint!
1. $d^T V g_i(x^*) \leq 0 \forall i \in I \Rightarrow -d^T V f(x^*) \leq 0$

Directional derivatives satisfying $d^T V g_i(x^*) \leq 0 \forall i \in I$ are feasible directions.

Directional derivatives satisfying $d^T V f(x^*) \geq 0$ are directions of ascent.

Every feasible direction is non-improving.

2. $\exists \lambda_i \geq 0$ such that $\sum_{i \in I} \lambda_i V g_i(x^*) = -V f(x^*)$

The steepest descent direction at x^* is in the cone generated by the gradients of the tight constraints at x^*.

K-K-T "Necessary" Condition for Optimality

If x^* is an optimal solution to

Minimize $f(x)$

subject to $g_i(x) \leq 0, i=1,2,\ldots,m$

then

The directional derivative of $f(x)$ is nonnegative in every feasible direction at x^*.

K-K-T "Necessary" Condition for Optimality

If x^* is an optimal solution to

Minimize $f(x)$

subject to $g_i(x) \leq 0, i=1,2,\ldots,m$

then

The steepest descent direction at x^* is in the cone generated by the gradients of the tight constraints at x^*.

(Equivalent condition, according to Farkas' Lemma)