the Poisson process
Contents

- Poisson process as limiting case of the Bernoulli process
- Poisson distribution
- Exponential distribution
- Erlang (Gamma) distribution
The Poisson Process as a limiting case of the Bernoulli Process
Consider the following situation:

\[\cdot \cdot \cdot 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ \cdots \ t \]

A time interval of length \(t \) seconds is divided into one-second intervals, with the probability of a vehicle arriving at an intersection during a one-second interval being a small number \(p \). (Assume that the probability that more than one vehicle arrives is negligible.)
Consider the Bernoulli process \(\{X_k; k=1,2,...\} \) where \(X_k = 1 \) if a vehicle arrives during the \(k^{\text{th}} \) second, and the associated counting process \(\{N_t\} \) which counts the number of arrivals during the interval \([0,t]\).

Then \(N_t \) has the binomial distribution:

\[
P(N_t = x) = \binom{t}{x} p^x (1-p)^{n-x}
\]

with expected value \(\nu = tp \).
Consider what happens as we divide \([0,t]\) into \(n\) smaller time intervals, but in such a way that the expected number of arrivals in \([0,t]\) remains constant, \(\nu\).

That is, the probability of an arrival in each of these small intervals must be \(\frac{\nu}{n}\), and

\[
P(N_t = x) = \binom{n}{x} \left(\frac{\nu}{n}\right)^x (1 - \frac{\nu}{n})^{n-x}
\]
\[P(N_t = x) = \binom{n}{x} \left(\frac{\nu}{n} \right)^x \left(1 - \frac{\nu}{n} \right)^{n-x} \]

\[= \frac{n!}{x!(n-x)!} \left(\frac{\nu}{n} \right)^x \left(1 - \frac{\nu}{n} \right)^n \left(1 - \frac{\nu}{n} \right)^{-x} \]

\[= \frac{\nu^x}{x!} \left(1 - \frac{\nu}{n} \right)^n \left(\frac{n!}{(n-x)!} \right) \frac{1}{n^x \left(1 - \frac{\nu}{n} \right)^x} \]
Consider the limit of this distribution as $n \rightarrow +\infty$

$$P(N_t = x) = \frac{v^x}{x!} \left(1 - \frac{v}{n}\right)^n \left(\frac{n!}{(n-x)!}\right) \frac{1}{n^x (1 - \frac{v}{n})^x}$$

$$\downarrow$$

$$e^{-v} \frac{n(n-1)(n-2) \cdots (n-x+1)}{\left[n \left(1 - \frac{v}{n}\right)\right]^x}$$

$$\rightarrow \frac{n^x}{n^x} = 1$$
\[P(N_t = x) = \frac{\nu^x}{x!} e^{-\nu} \]

If the arrival rate is \(\lambda \) /second, then \(\nu = \lambda t \) and

\[P(N_t = x) = \frac{\(\lambda t\)^x}{x!} e^{-\lambda t} \]

for \(x = 0, 1, 2, 3, \ldots \)

\[\text{Poisson Distribution} \]
Poisson Distribution

\[P(N_t = x) = \frac{(\lambda t)^x}{x!} e^{-\lambda t} \]

for \(x = 0, 1, 2, 3, \ldots \)

Mean Value

\[E(N_t) = \lambda t \]

Variance

\[\text{Var}(N_t) = \lambda t \]

mean and variance are equal!
Example A left-turn lane at an intersection has a capacity of 3 autos. 30% of autos arriving at the intersection wish to turn left. The expected number of autos arriving during a red signal is 6.

What is the probability that the capacity of the left-turn lane is exceeded during a red signal?
Given that N autos arrive, the number X of left-turning autos has the \textit{binomial} distribution.

The number N of autos arriving during the red signal has the \textit{Poisson} distribution.

\[
P\{X>3\} = \sum_{N=4}^{\infty} P\{X>3 \mid N \text{ arrivals}\} \ P\{N \text{ arrivals}\}
\]

- \text{computed using binomial distn.}
- \text{computed using Poisson distn.}

\@D.L.Brinker, U.of IA, 1999
\[P\{X > 3 \mid N \text{ arrivals}\} = \sum_{x=4}^{N} \binom{N}{x} (0.3)^x (0.7)^{N-x} \]

\[= 1 - \sum_{x=0}^{3} \binom{N}{x} (0.3)^x (0.7)^{N-x} \]

\[P\{N \text{ arrivals}\} = \frac{6^N}{N!} e^{-6} \]
Poisson Distribution

Probability that \(N \) autos arrive during the red signal

\[
\frac{6^N}{N!} e^{-6}
\]

\(0.0022\)

\(0.0099\)

\(0.0113\)

\(0.0052\)

\(0.0225\)

\(0.0413\)

\(0.0688\)

\(0.1033\)

\(0.1377\)

\(0.1606\)

\(0.1606\)

\(0.1339\)

\(0.0892\)

\(0.0446\)

\(0.0149\)

\(0.0025\)

\(N\)

\(0\)

\(1\)

\(2\)

\(3\)

\(4\)

\(5\)

\(6\)

\(7\)

\(8\)

\(9\)

\(10\)

\(11\)

\(12\)

\(13\)

\(14\)

\(15\)

\(\cdots\)

© D.L. Bricker, U. of IA, 1999
The probability that the capacity of the left-turn lane is exceeded during each red signal is about 11%.

| \(N\) | \(P(N)\) | \(P(X|N)\) | \(P(X|N)P(N)\) |
|-------|----------|------------|-----------------|
| 0 | 0.00247875 | 0.00000000 | 0.00000000 |
| 1 | 0.01487251 | 0.00000000 | 0.00000000 |
| 2 | 0.04481754 | 0.00000000 | 0.00000000 |
| 3 | 0.08923508 | 0.00000000 | 0.00000000 |
| 4 | 0.13386262 | 0.00810000 | 0.0010421 |
| 5 | 0.18082314 | 0.03078000 | 0.00494398 |
| 6 | 0.18062314 | 0.07047000 | 0.01131911 |
| 7 | 0.13787898 | 0.12503600 | 0.01735226 |
| 8 | 0.10325773 | 0.19410435 | 0.02004378 |
| 9 | 0.06693849 | 0.27034090 | 0.01850986 |
| 10 | 0.04130309 | 0.35038928 | 0.01447216 |
| 11 | 0.02252896 | 0.43043786 | 0.00969731 |
| 12 | 0.01126448 | 0.50740423 | 0.00571655 |
| 13 | 0.00519899 | 0.57939435 | 0.00301227 |
| 14 | 0.00228144 | 0.64483257 | 0.00143678 |
| 15 | 0.00089128 | 0.70313207 | 0.00062687 |

\[\sum P(X|N)P(N) = 0.1083\]
Time between arrivals

Suppose that the number of arrivals in an interval has the Poisson distribution with arrival rate λ/second.

Let $T_1 =$ time of the first arrival.
What is the distribution of T_1?
Poisson processes- Intro

\[\begin{align*}
P(T_1 > t) &= \text{P(NO arrivals occur in interval } [0,t]) \\
&= \frac{(\lambda t)^0}{0!} e^{-\lambda t} = e^{-\lambda t} \\
\text{CDF: } P(T_1 \leq t) &= F(t) = 1 - e^{-\lambda t} \\
\text{Density function: } f(t) &= \frac{d}{dt} F(t) = \lambda e^{-\lambda t}
\end{align*} \]
Exponential Distribution

\[F(t) = 1 - e^{-\lambda t} \]

Mean Value

\[E(T_1) = \frac{1}{\lambda} \]

Variance

\[\text{Var}(T_1) = \frac{1}{\lambda^2} \]
Example

Suppose that the arrival rate for northbound autos is 6 per 30 second red signal, i.e., 0.2/second

What is the distribution of the arrival time of the first auto? (This will also be the distribution of the time between arrivals!)

@D.L Bricker, U.of IA, 1999
\[f(t) = \lambda e^{-\lambda t} \]
\[\lambda = 0.2/\text{sec.} \]

\[F(t) = 1 - e^{-\lambda t} \]

Exponential Distribution

\[P[T_1 \leq t] \]

\begin{tabular}{|c|c|}
 \hline
 t & \(F(t) \) \\
 \hline
 1 & 0.18127 \\
 2 & 0.32968 \\
 3 & 0.45119 \\
 4 & 0.55087 \\
 5 & 0.63212 \\
 6 & 0.69981 \\
 7 & 0.75340 \\
 8 & 0.79810 \\
 9 & 0.83470 \\
 10 & 0.86486 \\
 11 & 0.88920 \\
 12 & 0.90928 \\
 13 & 0.92573 \\
 14 & 0.93919 \\
 15 & 0.95021 \\
 16 & 0.95924 \\
 17 & 0.96663 \\
 18 & 0.97268 \\
 19 & 0.97783 \\
 20 & 0.98168 \\
 \hline
\end{tabular}

©D.L.Bricker, U.of IA, 1999
Memoryless Property

Exponential Distribution

Suppose that it is known that, at time t_0, the first arrival has not yet occurred, i.e., $T_1 > t_0$.

What is the conditional distribution of T_1? That is, what is $P(T_1 \leq t \mid T_1 > t_0)$ for $t > t_0$?
Memoryless Property

\[P(T_1 \leq t \mid T_1 > t_0) = \frac{P(T_1 \leq t \cap T_1 > t_0)}{P(T_1 > t_0)} = \frac{P(t_0 \leq T_1 \leq t)}{P(T_1 > t_0)} \]

\[= \frac{F(t) - F(t_0)}{1 - F(t_0)} = \frac{1 - e^{-\lambda t}}{e^{-\lambda t_0}} - \frac{1 - e^{-\lambda t_0}}{e^{-\lambda t_0}} \]

\[= \frac{e^{-\lambda t_0} - e^{-\lambda t}}{e^{-\lambda t_0}} = 1 - e^{-\lambda(t - t_0)} \]
Memoryless Property

\[P\{T_1 \leq t \mid T_1 > t_0 \} = 1 - e^{-\lambda(t-t_0)} = P\{T_1 \leq t - t_0\} \]

If the time \(\tau \) is reckoned from time \(t_0 \), i.e., \(\tau = t - t_0 \), then

\[P\{T_1 \leq t \mid T_1 > t_0 \} = P\{T_1 \leq t - t_0\} = P\{T_1 \leq \tau\} \]

In other words, the failure of an arrival to occur before time \(t_0 \) does not alter one's prediction of the length of time (from \(t_0 \)) before the next arrival.
Time of \(k^{th} \) Arrival

Let \(T_k \) = time of \(k^{th} \) arrival,
\[\tau_k = T_k - T_{k-1} = \text{time between arrivals } k-1 \text{ and } k. \]

Suppose that \(\tau_k \) (\(k=1,2,3,\ldots \)) have identical and independent exponential distributions with rate \(\lambda \).

Then \(T_k \) is the \textit{sum} of \(k \) random variables with exponential distributions.

It is said to have a \textit{k-Erlang} distribution.

@D.L.Bricker, U.of IA, 1999
Erlang Distribution

time of k^{th} arrival in a Poisson process

Density function

$$f(t) = \frac{\lambda (\lambda t)^{k-1} e^{-\lambda t}}{(k-1)!}$$

$$= \frac{\lambda (\lambda t)^{k-1} e^{-\lambda t}}{\Gamma(k)}$$

where the Gamma function is defined by

$$\Gamma(k) = \int_0^\infty e^{-u} u^{k-1} du$$

$$= (k-1)! \text{ if } k \text{ integer}$$
Erlang Distribution

CDF

\[F(t) = \frac{\Gamma(k, \lambda t)}{\Gamma(k)} \]

where \(\Gamma(k, x) \) is the "incomplete Gamma function" defined by

\[\Gamma(k, x) = \int_0^x e^{-u} u^{k-1} \, du \]

@D.L.Bricker, U.of IA, 1999
Alternate computation, when k is integer

CDF

$$F(t) = P\{T_k \leq t\} = P\{N_t \geq k\}$$

$$= 1 - P\{N_t < k\}$$

$$= 1 - P\{N_t \leq k-1\}$$

where $N_t =$ # arrivals at time t

has the Poisson distribution:

$$F(t) = 1 - \sum_{x=0}^{k-1} \frac{(\lambda t)^x}{x!} e^{-\lambda t}$$

©D.L.Bricker, U.of IA, 1999
Erlang Distribution

Mean Value \[\mu = \frac{k}{\lambda} \]

Variance \[\sigma^2 = \frac{k}{\lambda^2} \]

(These expressions result from the fact that the random variable is the sum of \(k \) i.i.d. random variables.)

More generally, when \(k \) is not an integer, the probability distribution is called the Gamma distribution.

©D.L.Bricer, U.of I.A, 1999
Erlang Distribution

example:
\[\lambda = 0.2 \]

As \(k \) increases, the distribution becomes less skewed, and more "normal."

In the limit, as \(k \to \infty \), the \(k \)-Erlang distribution converges to the Normal distribution.