Estimation of L and ¥

m Based on the sample covariance matrix S or sample
correlation matrix R from observations x;, X,, ..., X,

m Two most popular methods: the principal component
method and the maximum likelihood method.

m The solution from either method can be rotated in order to
simplify the interpretation of factors.

m Try more than one method to seeif the solutions are
consistent with one another.

m For large data sets, split them in half and perform a factor
analysis on each part to check the stability of the solution.
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The Principal Component M ethod

PRINCIPAL COMPONENT SOLUTION OF THE FACTOR MODEL

The principal component factor analysis of the sampie covariance matrix § is
specified in terms of its crgcnvalue—elgcnvcctor pairs (Al €;). ()!n, 2ol

(Ap, €,), where Al = ,11 == ,\p Letm < p be the number of common fac
tors. Then the matrix of csnmatcd factor loadings {{’( ,} is given by
= [VM € i \//\1 €y E S E \/)l. e ] {9-]_5}

The estimated specific variances are provided by the diagonal elements of the
matrix § — LI.' SO

"51 E gy
- o e i"c?-j (9-16)
b
Communalities are estimated as
=G+ E ¥ (9-17)

The principal component factor analysis of the sample correlation matrix is
obtained by starting with R in place of S.
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Example 9.4

m Factor analysis of stock-price data
m Use m=2 and sample correlation matrix R.
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Example 9.4 (Cont.)

Estimated factor loadings, communalities and specific variances for
one-factor (m= 1) and two-factor (m = 2) decomposition

One-factor solution Two-factor solution
e epee—— — o .
Estimated factor Specific Estimated factor Specilic
loadings variances ‘ loadings variances
) - - | ) ; i
Variable F, o, = 1 h F, F, g, =1-h
1. Allied Chemical 783 217 34
2. Du Pont 173 458 19
3. Union Carbide | 794 - 234 31
4. Exxon 713 | 472 27
5. Texaco 712 [ 524 2

Cumulative
proportion of total

(standardized) |
sample variance L

explained

Market factor Industry factor
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Example 9.3 : Factor Analysis

| O DIISUITIEL -1 E1E1 S110CC
In a consumer-preference study, arandom sample of customers were asked to rate
severa attributes of anew product. The responses, on a7 semantic differential scale,

were tabulated and the attribute correlation matrix constructed.

1 2 3 4 57

Autribute (Variable) |' )
‘l.ou 02 (96 42 .0

Taste 1 |
Goodbuyformoney 2| 02 100 .13 .71 (89
Flavor 3] 9% .13 100 50 .11

Suitable for snack 42 71 50 100 (79

0ol 8 .1 .79 1.00

th &

Provides lots of energy

«Var 1 and var 3, var 2 and var 5 form groups, i.e. are highly correlated.
e Var 4 is “closer”, i.e. more correlated, to (var 2, var 5).
« We might expected there are two or three common factors.

The first two eigenvalues, A, = 2.85 and A, = L.81, of R are the onl§
eigenvalucs greater than unity. Moreover, m = 2 common factors will
account for a cumulative proportion
A, +A, 28 +18
Ay + A, _ 285 + 181 _ 93

p ]
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Example 9.3 (Cont.)

Estimated factor
loadings

= Specific
€, = Va8, Communalities variances
Variable F F, h} do=1-K
1. Taste 56 82 98 02
2. Good buy
for money 8 53 B8 12
3. Flavor 65 By o 98 02
1. Suitable
for snack 94 il 89 a1
5. Provides
lots of energy 80 | D4 93 07
e e e I S
Eigenvalues 285 1.81
Cumulative
proportion
of total
(standardized)
sample variance 571 932 |

« A rotation of the factors often reveals a simple structure and aids interpretation.
» We shall re-consider this example again after factor rotation.
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Maximum Likelihood M ethod

Assume the common factors F and the errors e are
normally distributed.

The MLE of L and ¥ are obtained by numerically
maximizing the likelihood function subject to that L ™P-1L
isadiagonal matrix. The constraint is a computationally
convenient uniqueness condition.

Example 9.5: factor analysis of stock-price data using the
maximum likelihood method (use correlation matrix R)
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Factor Rotation

Since the originally estimated |oadings may not be readily
interpretable, it isusual practice to rotate them until a
“simple structure” is achieved.

The general principal isto see a pattern of loadings such
that each variable loads highly on asingle factor and has
small to moderate loadings on the remaining factors.

Geometric interpretation for m=2
Varimax criterion (details not required)
Oblique rotations (not required)
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Maximum likelihood |

Example 9.10 : Factor

Rotation for Stock-Price Data

estimates of factor Rotated estimated Specific
| loadings factor loadings variances
Variable F, F, F Fro |, =1-h?
Allied Chemical 684 189 (601 377 50
Du Pont 694 517 | ‘ ,SS(IJ 164 25
Union Carbide 681 248 | 683 335 47
Exxon 621 —073 365 507 61
Texaco | ™2 —.442 208 (883 ) 18
Cumulative
proportion
of total
sample variance
explained 485 598 335 598
—_— i —_—— e — _—
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Example 9.9 : Factor Rotation
for Consumer -Pr efer ence Data

It is clear that variables 2, 4, and 5 define factor 1 (high loadings on fag-
tor 1, small or negligible loadings on factor 2), while variables 1 and 3 define
factor 2 (high loadings on factor 2, small or negligible loadings on factor L)
Variable 4 is most closely aligned with factor 1, although it has aspects of the

trait represented by factor 2. We mught call factor 1 a nurritional lactor and

factor 2 a raste factor.

Variable

1. Taste

2. Good buy for money
3. Flavor

4. Suitable for snack

5. Provides lots of energy

Cumulative proportion
of total (standardized)
sample variance explained

Estimated Rotated
factor estimated factor
loadings loadings Communalities
F, F | F F i?
56 82 o (99 98
.78 52 (94) -.01 .88
65 75 13 ) 98
94 —-.10 (84) 43 89
80 -.54 97) 02 93
! ==
|
571 932 ‘ 507 932




Example 9.9 (Cont.)

The factor loadings for the variables ave pictured with respect to the
original and (varimax) rotated factor axes in Figure 9.2. &
F,
1 A
ol
F A
'
s
5 F
F
F
/
/
0 -
~ 5 s |
-~ -
= "
~
-
-
.
o
s .
.
-~
., Figure 9.2 Factor rotation for
d h?'Ff}{'lL‘i cal T'I.!-'LI I”'ll data
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Example: Factor Analysisfor Single
Station Assembly Process Diagnosis

PZ
M, (x.2) M,(xz) M(x2)

Observable variables (x) are 8 dimensional measurements on
the assembly, including x- and z- direction deviations of
measurement points M,, M3, Mg, and M. Two (unknown)
process faults are present: x-direction variation of locator P,
and z-direction variation of locator P,.
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Estimated Factor L oadings

Variables Factor 1 Factor 2 Factor 1% Factor2 ¥
1 0.3934 -0.0255 0.3938 -0.0181
2 0.01 -0.1341 0.0125 -0.1339
3 0.3916 0.0187 0.3912 0.0261
4 0.0055 0.0087 0.0053 0.0088
5 0.3935 -0.0166 0.3938 -0.0091
6 0.0133 -0.2214 0.0175 -0.2211
7 0.3912 0.0361 0.3904 0.0435
8 0.0202 -0.3965 0.0277 -0.396
97

Factor Rotation for Assembly

Process Diagnosis

lllustration of factor rotation from PC

0.05+ R

-0.05F- R

01k J

0151 i

un-rotated Factor 2
(=]
]
T

-0.3- i

-0.35F i

04 a ]

I I 1 I 1 1 I 1
0 0.05 0.1 015 02 025 03 035 04
un-rotated Factor 1

T cosp —sing| [0.9998 -0.0189
sing cosg@ 0.0189 0.9998

},and @=1.146°

98




Visualization of Loading

Losding vecter of Eacor,
bt [ ] y ]
- « All measurement points “move”
horizontally
o  With almost equal magnitudes
Eox « Factor 1 corresponds to locator
E P,’s variation along x-direction.
g o :
=
E @15
ot
606
a [
T 1

< All measurement points, except
M,, “move” along circles
centered at P,.

« With magnitudes proportional to
the distance from it to P,

« Factor 2 corresponds to locator
P,’s variation along z-direction.

100




