

Example 9.3 : Factor Analysis for Consumer-Preference Data In a consumer-preference study, a random sample of customers were asked to rate several attributes of a new product. The responses, on a 7 semantic differential scale, were tabulated and the attribute correlation matrix constructed.								
Attribute (Variable)	3 4 5							
Taste 1 1.00 .02	2 (96) .42 .01							
Good buy for money 2 .02 1.0	0 .13 .71 (85)							
Flavor 3 .96 .1.	3 1.00 .50 .11							
Suitable for snack 4 .42 .71	.50 1.00 (.79)							
Provides lots of energy 5 01 .85	5 .11 .79 1.00							
 Var 1 and var 3, var 2 and var 5 form groups, i.e. are highly correlated. Var 4 is "closer", i.e. more correlated, to (var 2, var 5). We might expected there are two or three common factors. 								
The first two eigenvalues, $\lambda_1 = 2.85$ and $\lambda_2 = 1.81$, of R are the only eigenvalues greater than unity. Moreover, $m = 2$ common factors will account for a cumulative proportion								
$\frac{\hat{\lambda}_1 + \hat{\lambda}_2}{p} = \frac{2.85 + 1.8}{5}$	¹¹ = .93							
	89							

			E	xample 9.	3 (
n	Estimat load $\tilde{\ell}_{ij} =$	ed factor dings $\sqrt{\hat{\lambda}_i} \hat{e}_{ij}$	Communalities	Specific variances	
Variable	F_1	F_2	\widetilde{h}_i^2	$\widetilde{\psi}_i = 1 - \widetilde{h}_i^2$	
1. Taste 2. Good buy	.56	.82	.98	.02	
for money	.78	53	.88	.12	
 Flavor Suitable 	.65	.75	.98	.02	
for snack 5. Provides	.94	11	.89	.11	
lots of energy	.80	54	.93	.07	
Eigenvalues	2.85	1.81			
Cumulative proportion of total (standardized) sample variance	.571	.932			

• We shall re-consider this example again after factor rotation.

	Maximum likelihood estimates of factor loadings		Rotated estimated factor loadings		Specific variances	
Variable	F_1	F_2	$F_1^{ m sk}$	F_2^*	$\hat{\psi}_i = 1 - \hat{h}_i^2$	
Allied Chemical Du Pont Union Carbide Exxon Texaco	.684 .694 .681 .621 .792	.189 .517 .248 073 442	.601 .850 .643 .365 .208	.377 .164 .335 .507 .883	.50 .25 .47 .61 .18	
Cumulative proportion of total sample variance explained	.485	.598	.335	.598		

Example 9.9 : Factor Rotation for Consumer-Preference Data It is clear that variables 2, 4, and 5 define factor 1 (high loadings on factor 1, small or negligible loadings on factor 2), while variables 1 and 3 define factor 2 (high loadings on factor 2, small or negligible loadings on factor 1). Variable 4 is most closely aligned with factor 1, although it has aspects of the trait represented by factor 2. We might call factor 1 a nutritional factor and factor 2 a taste factor. Estimated Rotated factor estimated factor loadings loadings Communalities Variable \hat{h}_i^2 F_1 F_2 F_{1}^{*} F_2^{\oplus} 1. Taste .56 .82 .02 .99 .98 2. Good buy for money .78 -.52 (.94) -.01 .88 .65 .75 .13 (.98) .98 3. Flavor 4. Suitable for snack 94 -.10.84 .43 .89 .97 5. Provides lots of energy .80 -.54-.02 .93 Cumulative proportion

.932

.507

.932

of total (standardized)

sample variance explained

.571

94

5

Estimated Factor Loading for m = 2 (PC Method							
Variables	Factor 1	Factor 2	Factor 1*	Factor 2 *			
1	0.3934	-0.0255	0.3938	-0.0181			
2	0.01	-0.1341	0.0125	-0.1339			
3	0.3916	0.0187	0.3912	0.0261			
4	0.0055	0.0087	0.0053	0.0088			
5	0.3935	-0.0166	0.3938	-0.0091			
6	0.0133	-0.2214	0.0175	-0.2211			
7	0.3912	0.0361	0.3904	0.0435			
8	0.0202	-0.3965	0.0277	-0.396			
			<u> </u>		97		

