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Monitoring Quality with Principal Monitoring Quality with Principal 
ComponentsComponents

Conventional multivariate control-charting procedures are 
reasonably effective as long as p (the number of process 
variables) is not very large.
Today, it is not uncommon for data to be collected on tens 
or even hundreds of process variables in electronic, 
chemical, and manufacturing processes.
As p increases, the ARL performance to detect a specified 
shift in the mean of these variables for multivariate control 
charts also increases, because the shift is “diluted” in the 
p-dimension space of process variables.
In the situations where it is suspected that most of the 
variability in the process is in a relatively small subset of 
process variables, sensitivity to detect special causes of 
variation can be enhanced based on principal components.
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Phase I: TwoPhase I: Two--Part ProcedurePart Procedure

First part: construct an ellipse format chart (chi-square 
chart for two variables) for the scores of the first two 
principal components for each observation.
Second part: create a chart from the remaining principal 
components. 
Example 8.10 and 8.11 of J&W
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Phase I Charts for Ex 8.10&11Phase I Charts for Ex 8.10&11
First part:

Second part:
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Factor AnalysisFactor Analysis
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IntroductionIntroduction

Factor analysis (FA) is to describe the covariance 
relationships among many variables in terms of a few 
underlying, but unobservable, random quantities called 
factors.
The goal of factor analysis is to reduce the redundancy among 
the variables by using a smaller number of factors.
Factor analysis can be considered an extension of principal 
component analysis. The major differences between FA and 
PCA are:

Principal components are defined as linear combinations of the 
original variables. In FA, the original variables are expressed as linear 
combinations of the factors
In PCA, we explain a large part of the total variance of the variables. 
In FA, we seek to account for the covariances or correlations among 
the variables.
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Factor Analysis ModelFactor Analysis Model

The observed random vector X, with p components has 
mean μ and covariance matrix Σ. The factor model 
assumes that X is linearly dependent on a few 
unobservable random variables F1, F2, …, Fm, called 
common factors. Let F=[F1, …, Fm]T, in matrix notation,
X-μ=LF+ε
The p-by-m matrix L is the matrix of factor loadings.
F1, F2, …, Fm, ε1, …, εp are all unobservable random 
variables.
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Orthogonal Factor Model with Orthogonal Factor Model with mm
Common FactorsCommon Factors

Orthogonal factor model: X=μ+LF+ε with E[F]=0, 
cov[F]=I, E[ε]=0, cov[ε]=Ψ, a diagonal matrix, and F and 
ε are independent.
Under the orthogonal factor model, 

cov[X]=LLT+Ψ
cov[X, F]=L

The variance of Xi, i=1, …, p due to the m common 
factors is called the ith communality. The portion of 
variance of Xi due to εi is called specific variance.
Example 9.1 of J&W
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Determination of Factor LoadingsDetermination of Factor Loadings

Factor analysis is most useful when m is small relative to 
p to provide “simple” explanation of the covariation in X.
Unfortunately, most covariance matrices cannot be 
factored when m is much less than p (Example 9.2).
When m>1, there is always some inherent ambiguity 
associated with the factor model. Factor loadings L are 
determined only up to an orthogonal matrix T. Thus the 
loadings L*=LT and L both give the same representation. 
The communalities are also unaffected by the choice of T.
Factor analysis strategy:

Uniquely estimate L and Ψ by imposing additional conditions.
Rotate loading matrix based on some criteria.


