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A projection approach to designing multivariate control schemes is used that simplifies the construction
and understanding of these charts. The method is applied to construct charts that are sensitive to specific

“assignable causés such as a mean shift that affects only asubset-of the-variables and a model-fixed assignable

cause that can occur when one variable causes another. The projection results in a chart that is easy to
compute and design and it has greater sensitivity than a chi-square chart for the assignable cause under
study. Fdrthermorg. the chart can be analyzed using the convenient central and noncentral chi square
distributions.when the process is on-target and off-target, respectively.

Introdu(:tion

MULTIVARIATE statistical process control uses the
relationships between variables to improve the
detection of assignable cause in processes. An event
might not be flagged as unusual from individual mon-
itoring of several variables, but it-can appear as quite
unusual in a multivariate control chart. A projection
approach to designing multivariate control schemes
is presented to develop charts that are sensitive to
assignable causes that shift the mean vector into
a specific subspace, such as a mean shift that af-
fects only a subset of the variables and a model-fixed
assignable cause that can occur when one variable
causes another. The projection results in a chart that
is easy to understand, compute, design, and analyze.

Multivariate control charts such as chi-square
charts, multivariate cumulative sum (CUSUM)
charts, or multivariate exponentially weighted mov-
ing average EWMA charts are used to detect a shift
in the mean vector of several variables. (See, for
example, Crosier (1988), Hawkins (1991), Hawkins
(1993), Lowry, Woodall, Champ, and Rigdon (1992),
Pignatiello and Runger (1990), and Wade and
Woodall (1993)). These charts are sensitive to shifts
of the process mean vector in any direction from the
target value. Let X (p x 1) denote the p variables
measured from a process at time t. Suppose the vari-

- .ables are normalized such that E(X) = 0, the zero

vector, when the process is on. target.Also, suppose
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the covariance matrix is unknown, it would be esti-
mated from data obtained during normal operating
conditions. Montgomery (1991) provides guidance
for estimation and charting in this case. If the mean
vector of X shifts to u then the average run length
of a chi-square chart only depends on p (the num-
ber of variables) and on u and X only through A

=u'X"'u. The detection sens1t1v1ty increases with

A

To reduce the dimensionality of the control prob-
lem, the method of principal components analysis
has been recommended (see, e.g., Jackson (1991))..
This generates a new set of variables, sometimes re-
ferred to as latent variables, that are linear combi-
nations of the original variables. The first principal
component variable is that linear combination of the
original variables with greatest variance (for all coef-
ficient vectors of unit length). The second principal
component variable is that linear combination with
greatest variance chosen from among coefficient vec-
tors of unit length that are orthogonal to the first

“coeflicient vector. Continuing in this manner, up to

p latent variables can be constructed.

Although using all p latent variables does not pro-
vide a dimensional reduction, sometimes the data
can be approximated as falling in a lower-dimensional
subspace spanned by a few (say, three or fewer) la-

tent variables. Then, the p-dimensional data set can

_be approximated with three or fewer variables. Let

_—=A]J denote-the Vector of thefirst k-principal ('.Dmgo-
“=nent variables. - If most of the va.nablhty in"Xcan be

explained by the first k principal components vari-

_ ables, then a chi-square chart can be applied U. Of
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course, this chart is not sensitive to shifts-of

“cess mean in directions orthogonal to the subspace
of U. However, because the dimensionality has been
reduced, this chart has greater sensitivity to shifts
within the subspace defined by U.

The subspace defined by the principal cemponents

is just one approach to reducing the dimension of

______ a multivariate control problem. Another approach
is to sénsitize a control chart to detect shifts in an
arbitrary subspace of the variables. In some applica-
tions, knowledge of assignable causes suggests that
shifts in the mean can only occur in a subset of the
full set of variables. That is, a shift might occur only
in the mean of Xi,...,X%. The mean of variables
k + 1 to p are not aflected by a specific assignable
cause.

For example, the manufacturing of magnetic tape
consists of wet processes that coat the web with a
magnetic ink and dry processes that slit and test
the tape. Typically, an assignable cause only af-
fects the mean of either the wet or dry variables,
although the variables are not necessarily indepen-
dent. More specifically, an assignable cause might
shift the means of all measurements across the tape
approximately equally or an assignable cause might
produce a difference in the means of measurements at
opposite edges of the tape. A chart can be sensitized
to specific assignable causes.

U? Chart

What is the appropriate multivariate control chart
if only a subset of variables are affected by an
assignable cause? This question is a special case of
the more general question of the appropriate control
chart for detecting a shift of the process mean to a
particular subspace, say U, of p-dimensional space.
The multivariate hypothesis test for a subspace al-
ternative provides guidance. The more general ques-
tion also applies to the case in which the means of
some variables are determined (or caused) by others
(see, e.g., Wade and Woodall (1993)). For example,
if Y = §X, then a shift in the mean of X from 0to u
results in a simultaneous shift in the mean of Y from
0 to Bp. Consequently, the mean of the bivariate
vector (X,Y) shlfts along the vector (1,8).

An appmpnate:control chart-¢ -CAN.- an be determined by
---an-extension of- ﬁx&:mogectmn:method used by Pig-
natxello and Runger (1990) tﬁdﬁf&f a shift a.logg a

ance matrlx ofZ=1thepxp 1dent1ty matrix. To
detect a shift in the mean of Z from 0 along the unit
vector v, we should use a control chart based on the
length of the orthogonal projection of Z onto v.

The result is a control chart based on the statistic
v'Z. Then, in general, to detect a shift of X from
0 to p we can standardize by considering Z =
212X and v =X~1/2y where £7/2 is the inverse
of a symmetric square root of X. The projection
method used results in the control statistic

V'Z = e 1X. (1)
For the one-dimensional case of detecting a shift
along a single vector, this result also agrees with
the recommendations given by Healy (1987) and
Hawkins (1991).

Now consider the detection of a shift in the mean
of X from O along an arbitrary vector in the k-
dimensional subspace U. Let the columns of the px k

. matrix U consist of a set of k orthonormal basis

pendent-an -/djgegége.l_ly distributed (i.i.d.) standard
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vectors for the subspace U. We can standardize to
Z = £71/2X and V = X~1/2U. Then, the length
squared of the orthogonal projection of Z onto V is

U?=2Z'V(V'V) V'L
=X'TUU'EU)IUETIX - (2)

and this is referred to as the U? statistic.

Therefore, the recommended control statistic to
detect a shift along a vector in U is a plot of U2
over time. Although U? appears complex, it is the
length of an orthogonal projection, and it can also
be described as a quadratic form based on an idem-
potent matrix. Therefore, standard results can be
applied. For example, U? has a chi-square distribu-
tion when the process is on target with degrees of
freedom equal to the rank of the subspace V- which
equals the rank of the subspace U in all but triv-
ial cases. Consequently, a control limit for the plot
of U? can be selected from the 100« tail-percentage
point of a chi-square distribution with k degrees of
freedom.

. g

F\lrthermoref_liﬁhg;xhean of X sh;.ﬁts to the vector

p-in-the subspac en U2 has-a-noncentral chi-

square distribution with- noncentralityparameter A =
n )3"1 . Therefore the performance of the U? chart

e value of X:tinder a shift is
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However, the 1mporta.nt adva.ntage of the U 2 cha.rt
is that the dimensionality has been reduced, with no
reduction in the noncentrality parameter. Therefore,
the performance of the U? chart can be comntrasted
to a chi-square chart by simply using a noncentral
chi-square table with a different degrees of freedom.

____Table 1 illustrates that a large improvement in de-

of potentla.l asmgnable causes at the dwlgn of-a chart
has the benefit of addressing this important question
early, at the phase-in of the control chart, rather than
reacting much later to a signal. Data available at the
time of a signal might confirm or contradict some of
the early evaluations of assignable causes. In either
case, both the knowledge of the process and the un-

tection performance that can be obtained from the
U? chart when it is applicable.

Healy’s (1987) chart is used to detect a shift along
a single vector in p-dimensional space. This reduces
the multivariate control problem to thé useof asingle -
statistic that is a linear combination of the observed
variables. The U? chart can be considered to be a
generalization of Healy’s method that accommodates
shifts in a subspace of arbitrary dimension.

Interpretation of a U2 Chart

The interpretation of a signal from a U? chart is
similar to the interpretation of a chi-square chart.
However, the interpretation of a U? chart can some-
times benefit from a simplifying assumption. A U?
chart is developed to detect an assignable cause that
shifts the mean vector in a subspace of the variables.
The subspace being monitored is best chosen based
on process knowledge of anticipated (or potential)
assignable causes. Consequently, a signal from a U?
chart suggested that the anticipated assignable cause
has occurred.

To reduce the dimension of the control problem, a
consideration of the variables that can potentially be
affected by a assignable cause is made during the de-
velopment of a U2 chart. Initiating the consideration

TABLE 1. Average Run Length Comparisons for x2
and (2 Control Charts

No. of Dimension of- A
Chart UCL Variables Shift Subspace—1 2 3 4

x? 4000 20 117 74 49 34
U? 2519 10 93513121
U? 1855 6 74 37 22 14
U? 12.84 3 522414 9
x? 2519 10 — ‘93 513121
U? 1675 .o :‘—~68 331912
U? -12.84 - -3 T2 U

U? -10:60 - 2 4218 11 7'*

On—Targm Length- _20-0

Vol. 28, No. 3, July 1996

“¢ause, then a subset chart of the type described-below-

derstanding of an appropriate control strategy will
improve.

If there is knowledge that the mean of some, but
not all variables will be affected by an assignable

can be used. If process knowledge can only distin-
guish an important subset of variables, then the in-
terpretation of the variables contributing to a signal
is similar to the interpretation of a chi-square chart
for this subset of variables. That is, the individual
variables and their relationships at the time of the
signal are studied for guidance. Methods proposed
for interpreting a signal from a chi-square chart by
Murphy (1987), Chua and Montgomery (1992), and
Mason, Tracy, and Young (1995) should be adaptable
to interpreting a signal from a U? chart.

Although the interpretation of a multivariate con-

_trol chart signal can be difficult, it is often difficult

to correct the signal from even a univariate control
chart without adequate process knowledge. Consider -
a signal from a univariate control chart for a dimen-
sion of an injection molded part. There is rarely
a machine control that affects only that dimension.
Instead, there are pressure, temperature, and flow
controls for the press, and changes to any one of the
press settings can affect all the dimensions (as well
as other characteristics of a molded part). One will
investigate all the individual variables and their rela-
tionships to understand a signal from even a univari-
ate control chart and to select the best corrective
action from among choices that affect many of the
variables.

More generally, a single measured variahle does
not often uniquely correspond to a single process or
machine setting variable. However, the variables that
contribute to a signal from a control chart are iden-
tified, the final corrective action is based-on process
knowledge and requires an- understandmg_o_ﬁhe rela-
tionships betweenihepmca‘ss settmgs a.nﬂ all of the
measured variables: - ' . ]
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“only shift the mean of a subset of k¥ variables. This

is referred to as a subset assignable cause. Other
than specifying the subset, the assignable cause is
arbitrary. Let the variables in the subset be denoted
as the k x 1 vector X; and let the remaining p — k
variables be denoted as X so that X’ = (X}, X5).
For example, in the manufacturing of magnetic tape
X, and-Xcan-denote-subsets-of wet -and dry vari-
ables, respectively. An assignable cause that affects
the mean vector of X, is an example of a subset
assignable cause.

_Let the covariance matrix of X be partitioned sim-

o ilarly into ¥;; and ¥5;. Let I denote a k x k iden-

tity matrix and 0 denote a (p — k) x k zero matrix.
Then, a convenient orthonormal basis for the space
of off-target means is U’ = (I, 0). It is shown in the
appendix that in this case

U? =X'271X - X}, 2.1 X, (3)
That is,, U? is the remainder after the chi-square
statistic applied to X is subtracted from the full
chi-square statistic. This form is quite simple for
computations. Note that, in general, U? in (3) is not
equal to x3 = X|Z['X;. The covariances between
X; and X, are used in the computation of UZ.

Furthermore, U? has a convenient chi-square dis-
tribution with k degrees of freedom when the process
is on target. If the process mean shifts to a vector in
the subspace of U, then g’ = (4}, 0) for an arbitrary
k-dimensional vector y; and U2 has a noncentral chi-
square distribution with noncentrality parameter A =
1S 1. This is the same noncentrality parameter
as the chi-square statistic applied to the full set of p
variables.

If one uses the statistic x? = X} X7'X; to detect
the shift to p¢/ = (g}, 0), then the dimension of the
control statistic is also reduced to k. However, if the

noncentrality parameter for the off-target distribu-_.
tion of x? is denoted as A, then it is shown in the -

appendix that

AL< A 4) -

That is, the sensitivity of U2 to shifts is always as

GEORGE C. RUNGER

— “Hawkins (1991, 1993) proposed solutions for de-

tecting a shift in the mean of one of several vari-
ables. The U? chart for a subset assignable cause
is designed to detect a shift in the mean vector of a

subset of the variables. Consequently, the objectives -

of the procedures are somewhat different. Hawkins’
(1991) method does not distinguish between the mea-
sured variables—that—can—and—cannot—experience a
shift in mean. Simultaneous univariate CUSUM con-
trol charts are used to detect a shift in the mean of
a single variable in X. Each variable is regression
adjusted for the others. Although this method ef-

—-fectively detects-a shift in the -mean of a-single vari-----

able, an adjustment to all variables in X can result
in control chart gaps in which assignable causes that
shift the means of more than one variable in X are
not easily detected. Also, correlations between the
simultaneous univariate charts complicate the selec-
tion of control limits and the evaluation of perfor-
mance. Simulations have been used to study these
charts. '

Hawkins (1993) distinguishes between the mea-
sured variables that can and cannot experience a
shift in mean. The method uses simultaneous uni-
variate CUSUM control charts on the variables in
X, that are regression adjusted for the variables in
X, to detect a shift in the mean of a single variable in
X;. Correlations between the simultaneous univari-
ate charts complicate the selection of control limits
and the evaluation of performance. Simulations have
been used to study these charts. In the case in which
the mean of any variable in X can potentially shift,
Hawkins’ (1993) method results in simultaneous uni-
variate CUSUM charts on each measured variable
(unadjusted). In this case, the control procedure is
the same as ones considered by Woodall and Ncube
(1985) and the correlations between the variables are
ignored.

The U? chart can be designed to detect an arbi-

~ trary shift in the mean vector of X, (as well as a shift

in other types of subspaces) and it is particularly
simple to select control limits for and analyze the U?
chart. In the case in which the mean of any variable
in X can potentially shift, the U? chart reduces to
the chi-square control chart applied to X and uses

the correlations between the variables in the con-
—"'*‘trtﬂ ‘algorithm. Although we have been-discussing
- a Shewhart version of the U? chart, the statistic can

»7la.rge or la.tger than the sensitivity of xf

easily be incorporated into-a multlvanﬂtﬂEWMA or—====-
a multiva.riate CUSUM chm S =

Vol. 28, No:3; July 1996 =
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best subsetted based on physical process character-
istics and anticipated assignable causes. In the mag-

netic tape example, a slitting problem affects the

means of the dry variables only. A U? chart devel-
oped to detect a subset shift in the means of the
dry variables would be useful in this case. Any vari-

__PROJECTIONS AND THE U MULTIVARIATE CONTROL CHART
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is no benefit from including X in the control algo-
rithm, regardless of the strength of the relationship
between X, and X5. The benefits of this result are
simpler charts with improved performance. Conse-
quently, when there are causal relationships between
variables, it is important to specify the anticipated

~ables that could suffer a mean shift from the slitting
problem would be included in X;. The remaining
process variables would be included in X;. The U 2
chart is most useful when there is a natural parti-
tioning of variables based on physical characteristics
of the process. Further research on using statistical
information to subset variables and to manage charts
for different subsets in the same process is needed.

Model-Fixed Assignable Causes

In the case above, the mean vector of X; can shift
without a corresponding change in the mean vector
of X,. In other processes, the mean vector of X, is
determined by X;. For simplicity, we consider just
two variables X; and X, with '

=pfXs+e (6)

where (3 is a known parameter, the variance of X, is
02, and e follows the usual regression assumptions.
That is, e is normally distributed, independent of X3,
with mean 0 and variance o2.

Suppose a shift in the mean of X, to u results in
a shift in the mean of X; to By so that the model is
preserved under the impact. Then, these assignable
causes result in a shift of (X;, X3) along the vector
= (B, 1). We refer to these types of shifts as
model-fized assignable causes to contrast them with
the other case considered above. Shifts along a vector
other than (B, 1) might then be called model-void
assignable causes.

Now, let W =

(X1;X2)'.. The covariance matrix
of W is

o2 [ﬂ2 f;f/a"’ ?] )

It is easily shown that U'E~! = (0, 072). Further-
more, using the definition of U?, it is a direct com-
putation:-to show that im-this case

J3en tiy, we obtain-the mter%tmg result that -

if X; i%=caused by Xg and the model persists af-

" ter the assignable ‘cause- (model-fixed), then- there

impact of assignable causes in the system. Theniext
obvious step suggested by this result is to supple-
ment the U? chart by an additional control chart (or
several) that is sensitive to assignable causes that
change the model between X; and X3. The finite in-
tersection tests poposed by Timm (1996) might be
combined with U? statistics to sensitize a control
strategy to a number of specific assignable causes.

Example

In a process 20 variables are being monitored.
However, the assignable cause anticipated only shifts
the mean of 6 of the variables. As an example, the 6
variables are dry process measurements in the man-

" ufacturing of magnetic tape. Let the 20 x 1 vector
X denote the 20 process variables and let the 14 x
1 vector X, denote the 14 variables with means un-
changed by the assignable cause. Then, a control
chart that plots

U?=X'E1X - X, 31X,

over time is recommended (X2 is the 14 x 14 sub-

matrix of ¥ ). The control limit is obtained from
the 100a% tail-area of a chi-square distribution with

6 degrees of freedom. If the size of the shift is A = 3,

then from Table 1 the average run length to detect

the shift is 22 points. A chi-square chart requires 49

points, on average, to detect the same shift. Knowl-
edge of the type of assignable cause expected can
improve the multivariate control scheme.

Conclusions

Multivariate control schemes can be designed to
be sensitive to specific assignable causes by a simple
projection method. The projection approach sim-
plifies the construction, explanation, and interpre-
tation of multivariate control schemes. The results
illustrate that- the type ofzmssignable cause that is

S a.ntlclp‘t*edﬁs cruc1a.l to thesdesign of a multivariate
™ _

“——tive to spemﬁc process anomalies and the projection

control st Schemes-ca'n be tuned to be sensi-

“*npproa.ch can clarify the different alternatives.

The comﬁpt -of controll_g for a shift in the plane
of the first few principal components can be extended

[ PRPURII RRF 4F o WO LTINS 0 NUONy PRty




———include-the independent variables.

to more general subspaces of p-dimensional space and
the resulting statistic can be both easy to compute
and interpretable. Furthermore, a causal relation-
ship between variables can result in a control scheme
that is sensitive to model-fixed assignable causes that
ignores the dependent variable and simplifies to only

In some cases, a few of these sensitized schemes
can be combined to simultaneously monitor for a few
assignable causes. The multiple comparison problem
can be ofiset with slightly increased control limits
selected by a simple Bonferroni approach “With a
few sensitized schemes, the increased detection abil-
ity can more than compensate for the wider control
limits resulting in improved performance and better
process control.

Software that includes matrix multiplications can
be used to calculate an arbitrary U? control chart.

_ A statistical software package that computes a co-

variance matrix from process data would be helpful.
Then any spanning vectors for the subspace of the
assignable cause can be used as the columns of the
matrix U to generate the U? statistic. In the special
case of a subset assignable cause, the U? statistic can
be computed more easily as the difference between
two chi square statistics as in (3). In this impor-
tant special case, any software package that includes
a chi-square control chart can be suitably modified.

Appendix

Derivation of the U? Statistic for a Subset
Assignable Cause

Partition £~! into components of size k and p — k
such that

- Bu B2
> l= .
[Bgl Bzz]
Let U’ = (I, 0) then,
Ul=xX'slyU's"'u)lu's X

Y BuBu
=X [Bz B_ [B11B12]X

B B
= xl b O 12 ] X.
[le BzTBu B2

~ ~Using the,,,formula for the i
. matrix -
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Therefore

B B
2 _ x| Bu 2 Ix
v [le By — X3

=X'B1X - X, 351X,

‘Derivation of the Noncentrality Paramefers

for a Subset Assignable Cause

The notation for partitioned matrices from the
first part of this appendix is also used here. The

noncentrality parameter of the U2 chart-for detect--

ing a shift to p' = (i, 0) is
A=pu'S
= Bup.

The noncentrality parameter for the statistic x? =
X\ ZX, is

A=

From the results for the inverse of a partitioned ma-
trix A

B = (T - Z1225, Ba1) !
= 21'11 + 21‘11212(22‘21
—ZuZ ' B2) 1T B

therefore,

A-A = I"12:1_11212(2§'2l
- T T T) S Bt
>0, (A1)

Last inequality in (A1) follows from the fact that
the covariance matrix of Xz-given X; is Tz —
25127 2. Consequently, (A1) is a quadratic form
of a positive semidefinite matrix and is nonnegative.
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