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feature, the regression adjustment procedure has many possible applications in chemical
and process plants where there are often cascade processes with several inputs but only a
few outputs. and where many of the variables are highly autocorrelated.

Just as it is important to monitor the process mean vector i in the multivariate case, it is
also important to monitor process variability. Process variability is summarized by the
p X p covariance matrix Z. The main diagonal elements of this matrix are the variances of
the individual process variables, and the off-diagonal elements are the covariances. Alt
(1985) gives a nice introduction to the problem and presents two useful procedures.

The first procedure is a direct extension of the univariate s> control chart. The proce-
dure is equivalent to repeated tests of significance of the hypothesis that the process
covariance matrix is equal to a particular matrix of constants Z. If this approach is used,
the statistic plotted on the control chart for the /th sample is

W, = —pn+ pnln(n)—nin(|A,|/|Z) +u(Z7'A;) (10-34)

]

where A; = (n — 1)S;, S; is the sample covariance matrix for sample /, and tr is the trace
operator. (The trace of a matrix is the sum of the main diagonal elements.) If the value of
W; plots above the upper control limit UCL =,(fw,”,_ y2» the process is out of control.

The second approach is based on the sample generalized variance, |S|. This statistic,
which is the determinant of the sample covariance matrix, is a widely used measure of
multivariate dispersion. Montgomery and Wadsworth (1972) used an asymptotic normal
approximation to develop a control chart for |S|. Another method would be to use the
mean and variance of |S|—that is, E(|S|) and V(|S|)—and the property that most of the
probability distribution of |S| is contained in the interval E[S| + 3vV([S]). It can be
shown that

E(|S|)=5|Z| (10-35)

and

where
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Therefore, the parameters of the control chart for [S| would be

UCL =| 2 (5, +3b}")
CL=b|X| (10-36)
LCL =| Z|(5, -35/?)

The lower control limit in equation 10-36 is replaced with zero if the calculated value js
less than zero.

Usually, in practice £ will be estimated by a sample covariance matrix S, based on the
dna!\ sis of preliminary samples. If this is the case, we should replace | X/ in equation 10-36
by | ‘1|}b], since equation 10-35 has shown that |b|'/b] is an unbiased estimator of |Z].

To 1Hustrare controlling process variability in the multivariate case, we will return to
Example 10-1 and construct a control chart for the generalized variance. Based on the 20
preliminary samples in Table 10-1, the sample covariance matrix is

[1.23 0.79]
S=
0.79 0.83]

0.5 o A AN

[l

12345678910 12 iz 16 18 20
Sample number

Figure 10-13 A control chart for the sample generalized vari-
ance, Example 10-2,
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S0
|S|=0.3968
The constants b, and b, are (recall that n = 10)

b = %{9)(8_} =0.8889

1
b, = e (9)(8)[(11)(10) - (9)(8)] = 0.4170

Therefore, replacing | Z| in equation 10-36 by | S|/, = 0.3968/0.8889 = 0.4464. we find
that the control chart parameters are

UCL =(|S|/b,)(b, + 3b§'z) = 0,4464[0.8889 +3(0.4170)"? ] =1.26
CL =|S|=0.3968
LCL =(|S |/by)(b, - 3b)?) = 0,4464[0.3889 - 3(0.4170)‘-"1 =—047=0

Figure 10-13 presents the control chart. The values of |S;| for each sample are shown in
the last column of panel (c¢) of Table 10-1.

e e

Although the sample generalized variance is a widely used measure of multivariate
dispersion, remember that it is a relatively simplistic scalar representation of a complex
multivariable problem, and it is easy to be fooled if all we look at is |S|. For example,
consider the three covariance matrices:

1 0 232 0.40—‘ JV 1.68 —0.40
S, = 8y = _ b andS; =
0 1 0.40 0.50 | |-0.40 050

Now |S]E =|8,| = IS5 =1, yet the three matrices convey considerably different infor-
mation about process variability and the correlation between the two variables. It is prob-
ably a good idea to use univariate control charts for variability in conjunction with the
control chart for |S].

10-7 LATENT STRUCTURE METHODS

Conventional multivariate control-charting procedures are reasonably effective as long as p
(the number of process variables to be monitored) is not very large. However, as p
increases, the average run-length performance to detect a specified shift in the mean of
these variables for multivariate control charts also increases, because the shift is “diluted”
in the p-dimensional space of the process variables. To illustrate this, consider the ARLS of
the MEWMA control chart in Table 10-3. Suppose we choose A = 0.1 and the magnitude



