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For moderate values of n—say, n = 10—the range loses efficiency rapidly, as it ignores al}
of the information in the sample between the extremes. However, for small sample sizes—
say, n £ 6—it works very well and is entirely satisfactory. We will use the range method
to estimate the standard deviation for certain types of control charts in Chapter 5. The
supplemental text material contains more information about using the range to estimate
variability. Also see Woodall and Montgomery (2000-01).

3-3 STATISTICAL INFERENCE FOR A SINGLE SAMPLE

The techniques of statistical inference can be classified into two broad categories: parameter
estimation and hypothesis testing. We have already briefly introduced the general idea of
point estimation of process parameters.

A statistical hypothesis is a statement about the values of the parameters of a proba-
bility distribution. For example, suppose we think that the mean inside diameter of a bear-
ing is 1.500 in. We may express this statement in a formal manner as

Hy: p=1.500
Hy: p#1500 (3-21)

The statement Hy: 2 = 1.500 in equation 3-21 is called the null hypothesis, and H;: u #
1.500 is called the alternative hypothesis. In our example, H, specifies values of the
mean diameter that are either greater than 1.500 or less than 1.500, and is called a two-
sided alternative hypothesis. Depending on the problem, various one-sided alternative
hypotheses may be appropriate.

Hypothesis testing procedures are quite useful in many types of statistical quality-
control problems. They also form the basis for most of the statistical process-control tech-
niques to be described in Parts II and III of this textbook. An important part of any
hypothesis testing problem is determining the parameter values specified in the null and
alternative hypotheses. Generally, this is done in one of three ways. First, the values may
result from past evidence or knowledge. This happens frequently in statistical quality con-
trol, where we use past information to specify values for a parameter corresponding to a
state of control, and then periodically test the hypothesis that the parameter value has not
changed. Second, the values may result from some theory or model of the process. Finally,
the values chosen for the parameter may be the result of contractual or design specifica-
tions, a situation that occurs frequently. Statistical hypothesis testing procedures may be
used to check the conformity of the process parameters to their specified values, or to
assist in modifying the process until the desired values are obtained.

To test a hypothesis, we take a random sample from the population under study, com-
pute an appropriate test statistic, and then either reject or fail to reject the null hypothesis
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" Hy. The set of values of the test statistic leading to rejection of Hy is called the critical
region or rejection region for the test.

Two kinds of errors may be committed when testing hypotheses. If the null hypothe-
sis is rejected when it is true, then a type I error has occurred. If the null hypothesis is not
rejected when it is false, then a type II error has been made. The probabilities of these two
types of errors are denoted as

o = P{type I error} = P(reject Hol H, is true}

B =P{type Il error} = P{fail to reject HOIHO is false}
Sometimes it is more convenient to work with the power of the test, where
Power = 1 — 8= P{reject Hy| H, is false)

Thus, the power is the probability of correctly rejecting Hy. In quality control work, ais
sometimes called the producer’s risk, because it denotes the probability that a good lot
will be rejected, or the probability that a process producing acceptable values of a partic-
ular quality characteristic will be rejected as performing unsatisfactorily. In addition, J is
sometimes called the consumer’s risk, because it denotes the probability of accepting a
lot of poor quality, or allowing a process that is operating in an unsatisfactory manner rel-
ative to some quality characteristic to continue in operation.

The general procedure in hypothesis testing is to specify a value of the probability of
type I error o, and then to design a test procedure so that a small value of the probability
of type II error 3is obtained. Thus, we speak of directly controlling or choosing the o risk.
The B risk is generally a function of sample size and is controlled indirectly. The larger is
the sample size(s) used in the test, the smaller is the 3 risk.

In this section we will review hypothesis testing procedures when a single sample of
n observations has been taken from the process. We will also show how the information
about the values of the process parameters that is in this sample can be expressed in terms
of an interval estimate called a confidence interval. In Section 3-4 we will consider sta-
tistical inference for two samples from two possibly different processes.

3-3.1 Inference on the Mean of a Population, Variance Known

Hypothesis Testing

Suppose that x is a random variable with unknown mean u and known variance o°. We
wish to test the hypothesis that the mean is equal to a standard value—say, 4. The hypoth-
esis may be formally stated as

Hy: p= iy
Hy p# iy (3-22)

The procedure for testing this hypothesis is to take a random sample of n observations on
the random variable x, compute the test statistic

— 0
ZO - /ﬁ : (3'23)
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3.3.6 The Probability of Type II Error and Sample Size Decisions

In most hypothesis testing situations, it is important to determine the probability of type II
error associated with the test. Equivalently, we may elect to evaluate the power of the test.
To illustrate how this may be done, we will find the probability of type II error associated
with the test of

Hy: u=pg
Hy: p#pg

where the variance ¢ is known. The test procedure was discussed in Section 3-3.1.
The test statistic for this hypothesis is

X—Ho
o/n
and under the null hypothesis the distribution of Z; is N(0, 1). To find the probability of
type II error, we must assume that the null hypothesis Hy: it = 11, is false and then find the

distribution of Z;. Suppose that the mean of the distribution is really y; = y, + 6, where
0 > 0. Thus, the alternative hypothesis H;: 1 # L, is true, and under this assumption the

distribution of the test statistic Z; is
8yn
Zy ~ N[ et 1] (3-45)

The distribution of the test statistic Zy under both hypotheses Hy and H; is shown in
Fig. 3-6. We note that the probability of type II error is the probability that Z, will fall
between -Z,, and Z,,, given that the alternative hypothesis H; is true. To evaluate this
probability, we must find F(Z,,) — F(— Zys,), where F denotes the cumulative distribution
function of the N(5\/;/0', 1) distribution. In terms of the standard normal cumulative dis-
tribution, we then have

Zo=

B= q)(zaﬂ - 5f j = q’[" a2~ 5fJ (3-46)

as the probability of type Il error. This equation will also work when 8 < 0.

Under H, Under H,

!
!
|
|
|
|
t
i

‘ :‘ ;
~Zp 0 Zy, 5 Vnlo 0

Figure 3-6 The distribution of Z, under H, and H,.
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The mean contents of coffee cans filled on a particular production line are being studied,
Standards specify that the mean contents must be 16.0 oz, and from past experience it i §
known that the standard deviation of the can contents is 0.1 oz. The hypotheses are

HO: ﬂ=16.0
Hy: u=#16.0

A random sample of nine cans is to be used, and the type I error probability is specified :
as = 0.05. Therefore, the test statistic is ]

_x-16.0
°7 0149

and Hy is rejected if lZO| > Zy g5 = 1.96. Suppose that we wish to find the probability of
type Il error if the true mean contents are 4, = 16.1 oz. Since this implies that 6=y, ~ fty 3
=16.1 - 16.0 =0.1, we have

B= (D(Za/z - ‘(S—;/EJ - ‘D('Za/z - %}

=¢(1.96—§(%1_)1(i))—¢(—1.96-§9%3lj

= O(~1.04) — O(~4.96)
=0.1492

That is, the probability that we will incorrectly fail to reject H if the true mean contents
are 16.1 oz is 0.1492. Equivalently, we can say that the power of the testis 1 — =1 -
0.1492 = 0.8508.

We note from examining equation 3-46 and Fig. 3-6 that Bis a function of n, 8, and a.
It is customary to plot curves illustrating the relationship between these parameters. Such
a set of curves is shown in Fig. 3-7 for a = 0.05. Graphs such as these are usually called
operating-characteristic (OC) curves. The parameter on the vertical axis of these curves
is 3, and the parameter on the horizontal axis is d = | 81 /6. From examining the operating-

_characteristic curves, we see that

1. The further the true mean 4, is from the hypothesized value i (i.e., the larger the
value of d), the smaller is the probability of type II error for a given » and ¢ That
is, for a specified sample size and ¢, the test will detect large differences more
easily than small ones.

2. As the sample size n increases, the probability of type II error gets smaller for a
specified 6 and «. That is, to detect a specified difference we may make the test
more powerful by increasing the sample size.
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Figure 3-7 Operating-characteristic curves for the two-sided normal test with o = 0.05.
(Reproduced with permission from C. L. Ferris, F. E. Grubbs, and C. L. Weaver, “Operating
Characteristic Curves for the Common Statistical Tests of Significance,” Annais of Mathematical
Statistics, June 1946.)

Operating-characteristic curves are useful in determining how large a sample is
required to detect a specified difference with a particular probability. As an illustration,
suppose that in Example 3-7 we wish to determine how large a sample will be necessary
to have a 0.90 probability of rejecting Hy: it = 16.0 if the true mean is i = 16.05. Since §
=16.05 - 16.0=0.05, we have d = | 6/5= 10.05//0.1 = 0.5. From Fig. 3-7 with f=0.10
and d = 0.5, we find n = 45, approximately. That is, 45 observations must be taken to
ensure that the test has the desired probability of type II error.

Operating-characteristic curves are available for most of the standard statistical tests
discussed in this chapter. For a detailed discussion of the use of operating-characteristic
curves, refer to Montgomery and Runger (2003).

Minitab can also perform power and sample size calculations for several hypothesis
testing problems. The following Minitab display reproduces the power calculations from
the coffee can-filling problem in Example 3-7.

Power and Sample Size
1-Sample Z Test

Testing mean = null (versus not = null)
Calculating power for mean = null + difference
Alpha = 0.05 Sigma = 0.1

Sample
Difference Size Power
0.1 9 0.8508
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The following display shows several sample size and power calculations based on the l'ubJ
berized asphalt problem in Example 3-3.

Power and Sample Size

1-Sample t Test

Testing mean = null (versus not = null)
Calculating power for mean = null + difference
Alpha = 0.05 Sigma = 117.61-

Sample
Difference Size Power
50 15 0.3354

1-Sample t Test

Testing mean = null (versus not = null)
Calculating power for mean = null + difference-
Alpha = 0.05 Sigma = 117.61

Sample Target Actual
Difference Size Power Power
50 46 0.8000 0.8055

1-Sample t Test

Testing mean = null (versus not = null)
Calculating power for mean = null + difference
Alpha = 0.05 Sigma = 117.61

Sample
Difference Size Power

100 15 0.8644

In the first portion of the display, Minitab calculates the power of the test in Example 3-3,

assuming that the engineer would wish to reject the null hypothesis if the true mean sta-
bilized viscosity differed from 3200 by as much as 50, using s = 117.61 as an estimate of
the true standard deviation. The power is 0.3354, which is low. The next calculation deter-
mines the sample size that would be required to produce a power of 0.8, a much better
value. Minitab reports that a considerably larger sample size, n = 46, would be required.
The final calculation determines the power with n = 15 if a larger difference between the
true mean stabilized viscosity and the hypothesized value is of interest. For a difference of ]
100, Minitab reports the power to be 0.8644.

3-4 STATISTICAL INFERENCE FOR TWO SAMPLES

The previous section presented hypothesis tests and confidence intervals for a single pop-
ulation parameter (the mean 1, the variance 6, or a proportion p). This section extends
those results to the case of two independent populations.
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CHAPTER OVERVIEW AND LEARNING OBJECTIVES

This chapter has three objectives. The first is to present the basic SPC problem-solving
tools, called the “magnificent seven,” and to illustrate how these tools form a cohesive,
practical framework for quality improvement. The second objective is to describe the sta-
tistical basis of the Shewhart control chart. The reader will see how decisions about sam-
ple size, sampling interval, and placement of control limits affect the performance of a
control chart. Other key concepts include the idea of rational subgroups, interpretation of
control chart signals and patterns, and the average run length as a measure of control chart
performance. The third objective is to discuss and illustrate some practical issues in the
implementation of SPC.

After careful study of this chapter you should be able to do the following:

1. Understand chance and assignable causes of variability in a process

2. Explain the statistical basis of the Shewhart control chart, including choice of
sample size, control limits, and sampling interval

3. Explain the rational subgroup concept

4. Understand the basic tools of SPC; the histogram or stem-and-leaf plot, the check
sheet, the Pareto chart, the cause-and-effect diagram, the defect concentration
diagram, the scatter diagram, and the control chart
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5. Explain phase I and phase 1I use of controi charts

6. Explain how average run length is used as a performance measure for a contro]
chart '

7. Explain how sensitizing rules and pattern recognition are used in conjunction
with control charts

4-1 INTRODUCTION

If a product is to meet or exceed customer expectations, generally it should be produced
by a process that is stable or repeatable. More precisely, the process must be capable of
operating with little variability around the target or nominal dimensions of the product’s
quality characteristics. Statistical process control (SPC) is a powerful collection of prob-
lem-solving tools useful in achieving process stability and improving capability through
the reduction of variability.

SPC can be applied to any process. Its seven major tools are

Histogram or stem-and-leaf plot
Check sheet

Pareto chart

Cause-and-effect diagram
Defect concentration diagram
Scatter diagram

Control chart

NSy AW

Although these tools, often called “the magnificent seven,” are an important part of SPC,
they comprise only its technical aspects. SPC builds an environment in which all individ-
uals in an organization seek continuous improvement in quality and productivity. This
environment is best developed when management becomes involved in the process. Once
this environment is established, routine application of the magnificent seven becomes part
of the usual manner of doing business, and the organization is well on its way to achiev-
ing its quality improvement objectives.

In this chapter we will present an overview of the magnificent seven. Of these tools,
the Shewhart control chart is probably the most technically sophisticated. It was developed
in the 1920s by Walter A. Shewhart of the Bell Telephone Laboratories. To understand the
statistical concepts that form the basis of SPC, we must first describe Shewhart’s theory
of variability.

4.2 CHANCE AND ASSIGNABLE CAUSES OF QUALITY VARIATION

In any production process, regardless of how well designed or carefully maintained it is,
a certain amount of inherent or natural variability will always exist. This natural variabil-
ity or “background noise” is the cumulative effect of many small, essentially unavoidable
causes. In the framework of statistical quality control, this natural variability is often
called a “stable system of chance causes.” A process that is operating with only chance
causes of variation present is said to be in statistical control. In other words, the chance
causes are an inherent part of the process.
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Figure 4-1 Chance and assignable causes of variation.

Other kinds of variability may occasionally be present in the output of a process. This
variability in key quality characteristics usually arises from three sources: improperly
adjusted or controlled machines, operator errors, or defective raw material. Such variabil-
ity is generally large when compared to the background noise, and it usually represents an
unacceptable level of process performance. We refer to these sources of variability that are
not part of the chance cause pattern as “assignable causes.” A process that is operating in
the presence of assignable causes is said to be out of control.!

These chance and assignable causes of variation are illustrated in Fig. 4-1. Until
time 7, the process shown in this figure is in control; that is, only chance causes of varia-
tion are present. As a result, both the mean and standard deviation of the process are at
their in-control values (say, U, and Op). At time #; an assignable cause occurs. As shown
in Fig. 4-1, the effect of this assignable cause is to shift the process mean to a new value
1y > U At time 1, another assignable cause occurs, resulting in 1 = U, but now the process
standard deviation has shifted to a larger value g, > Gy. At time 75 there is another assign-
able cause present, resulting in both the process mean and standard deviation taking on
out-of-control values. From time #, forward, the presence of assignable causes has resulted
in an out-of-control process.

Processes will often operate in the in-control state for relatively long periods of time.
However, no process is truly stable forever, and, eventually, assignable causes will occur,
seemingly at random, resulting in a “shift” to an out-of-control state where a larger pro-
portion of the process output does not conform to requirements. For example, note from
Fig. 4-1 that when the process is in control, most of the production will fall between the
lower and upper specification limits (LSL and USL, respectively). When the process is out
of control, a higher proportion of the process lies outside of these specifications.

'The terminology chance and assignable causes was developed by Shewhart. Today, some writers use the termi-
nology common cause instead of chance cause and special cause instead of assignable cause.
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A major objective of statistical process control is to quickly detect the occurrence of
assignable causes of process shifts so that investigation of the process and corrective
action may be undertaken before many nonconforming units are manufactured. The con-
trol chart is an on-line process-monitoring technique widely used for this purpose. Contro}
charts may also be used to estimate the parameters of a production process, and, through
this information, to determine process capability. The control chast may also provide infor-
mation useful in improving the process. Finally, remember that the eventual goal of sta-
tistical process control is the elimination of variability in the process. It may not be
possible to completely eliminate variability, but the control chart is an effective tool in
reducing variability as much as possible.

We now present the statistical concepts that form the basis of control charts. Chapters
5 and 6 develop the details of construction and use of the standard types of control charts,

4.3 STATISTICAL BASIS OF THE CONTROL CHART

4.3.1 Basic Principles

A typical control chart is shown in Fig. 4-2. The control chart is a graphical display of a
quality characteristic that has been measured or computed from a sample versus the sam-
ple number or time. The chart contains a center line that represents the average value of
the quality characteristic corresponding to the in-control state. (That is, only chance
causes are present.) Two other horizontal lines, called the upper control limit (UCL) and
the lower control limit (LCL), are also shown on the chart. These control limits are cho-
sen so that if the process is in control, nearly all of the sample points will fall between
them. As long as the points plot within the control limits, the process is assumed to be in
control, and no action is necessary. However, a point that plots outside of the control lim-
its is interpreted as evidence that the process is out of control, and investigation and cor-
rective action are required to find and eliminate the assignable cause or causes responsible
for this behavior. It is customary to connect the sample points on the control chart with
straight-line segments, so that it is easier to visualize how the sequence of points has
evolved over time.

Upper control limit

Sample quality characteristic

o

[1:]

3

g

5

1]

a

N

Lower control limit

| U TR S SO S SR SN S ; VD N N S N I

Sample number or time

Figure 4-2 A typical control chart.
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Even if all the points plot inside the control limits. if they behave in a systematic or
nonrandom manner, then this could be an indication that the process is out of control. For
example. if 18 of the last 20 points plotted above the center line but below the upper con-
trol limit and only two of these points plotted below the center line but above the lower
control limit, we would be very suspicious that something was wrong. If the process is in
control, all the plotted points should have an essentially random pattern. Methods for look-
ing for sequences or nonrandom patterns can be applied to control charts as an aid in
detecting out-of-control conditions. Usually, there is a reason why a particular nonrandom
pattern appears on a control chart, and if it can be found and eliminated, process per-
formance can be improved. This topic is discussed further in Sections 4-3.5 and 5-2.4.

There is a close connection between control charts and hypothesis testing, To illus-
trate this connection, suppose that the vertical axis in Fig. 4-2 is the sample average .
Now, if the current value of X plots between the control limits, we conclude that the
process mean is in control; that is, it is equal to some value t. On the other hand, if X
exceeds either control limit, we conclude that the process mean is out of control; that is,
it is equal to some value i, # 1. In a sense, then, the control chart is a test of the hypoth-
esis that the process is in a state of statistical control. A point plotting within the control
limits is equivalent to failing to reject the hypothesis of statistical control, and a point plot-
ting outside the control limits is equivalent to rejecting the hypothesis of statistical con-
trol. This hypothesis testing framework is useful in many ways, but there are some
differences in viewpoint between control charts and hypothesis tests. For example, when
testing statistical hypotheses, we usually check the validity of assumptions, whereas con-
trol charts are used to detect departures from an assumed state of statistical control. In gen-
eral, we should not worry too much about assumptions such as the form of the distribution
or independence when we are applying control charts to a process to reduce variability and
achieve statistical control. Furthermore, an assignable cause can result in many different
types of shifts in the process parameters. For example, the mean could shift instanta-
neously to a new value and remain there (this is sometimes called a sustained shift); or it
could shift abruptly; but the assignable cause could be short lived and the mean could then
return to its nominal or in-control value; or the assignable cause could result in a steady
drift or trend in the value of the mean. Only the sustained shift fits nicely within the usual
statistical hypothesis testing model.

One place where the hypothesis testing framework is useful is in analyzing the
performance of a control chart. For example, we may think of the probability of type I
error of the control chart (concluding the process is out of control when it is really in con-
trol) and the probability of type II error of the control chart (concluding the process is in
control when it is really out of control). It is occasionally helpful to use the operating-
characteristic curve of a control chart to display its probability of type II error. This would
be an indication of the ability of the control chart to detect process shifts of different mag-
nitudes. This can be of value in determining which type of control chart to apply in cer-
tain situations. For more discussion of hypothesis testing, the role of statistical theory, and
control charts, see Woodall (2000).

To illustrate the preceding ideas, we give an example of a control chart. In semicon-
ductor manufacturing, an important fabrication step is photolithography, in which a light
sensitive photoresist material is applied to the silicon wafer, the circuit pattern is exposed on
the resist typically through the use of high-intensity UV light, and the unwanted resist mate-
rial removed through a developing process. After the resist pattern is defined, the underly-
ing material is removed by either wet chemical or plasma etching. It is fairly typical to
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Figure 4-3 % control chart for flow width.

follow development with a hard-bake process to increase resist adherence and etch resis-
tance. An important quality characteristic in hard bake is the flow width of the resist, a mea-
sure of how much it expands due to the baking process. Suppose that flow width can be
controlled at a mean of 1.5 microns, and it is known that the standard deviation of flow
width is 0.15 microns. A control chart for the average flow width is shown in Fig. 4-3. Every
hour, a sample of five wafers is taken, the average flow width (x) computed, and X plotted *
on the chart. Because this control chart utilizes the sample average x to monitor the process -
mean, it is usually called an X control chart. Note that all of the plotted points fall inside the
control limits, so the chart indicates that the process is considered to be in statistical control. §

To assist in understanding the statistical basis of this control chart, consider how the |
control limits were determined. The process mean is 1.5 microns, and the process standard -
deviation is o= 0.15 microns. Now if samples of size n = 5 are taken, the standard devia-
tion of the sample average X is

Therefore, if the process is in control with a mean flow width of 1.5 microns, then by
using the central limit theorem to assume that X is approximately normally distributed,
we would expect 100(1 — )% of the sample means X to fall between 1.5 + Z,,,(0.0671)
and 1.5 — Zy; (0.0671). We will arbitrarily choose the constant Z,, to be 3, so that the
upper and lower control limits become

UCL =1.5+3(0.0671)=1.7013
and

LCL =1.5-3(0.0671)=1.2987

as shown on the control chart. These are typically called “three-sigma’? control limits.

“Note that “sigma” refers to the standard deviation of the statistic plotted on the chart (i.e., g), nor the standard devi-
ation of the quality characteristic.
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The width of the control limits is inversely proportional to the sample size n for-a given
multiple of sigma. Note that choosing the control limits is equivalent to setting up the crit-
ical region for testing the hypothesis

H0: /l=1.5 \
Hi: pu#l5

where 0'=0.15 is known. Essentially, the control chart tests this hypothesis repeatedly at' .
different points in time. The situation is illustrated graphically in Fig. 4-4.

We may give a general model for a control chart. Let w be a sample statistic that
measures some quality characteristic of interest, and suppose that the mean of w'is 4,, and
the standard deviation of w is o,,. Then the center line, the upper control limit, and the
lower control limit become

UCL=u,+Lo,
Center line=y,, 4-1)
1LCL=u, -

where L is the “distance” of the control limits from the center line, expressed in standard
deviation units. This general theory of control charts was first proposed by Walter A.
Shewhart, and control charts developed according to these principles are often called
Shewhart control charts.

The control chart is a device for describing in a precise manner exactly what is meant
by statistical control; as such, it may be used in a variety of ways. In many applications, it
is used for on-line process surveillance. That is, sample data are collected and used to con-
struct the control chart, and if the sample values of X (say) fall within the control limits and
do not exhibit any systematic pattern, we say the process is in control at the level indicated

Distribution of

individual
e Distribution
with mean of & .
u=15and Normal with
o=0.15 mean p= 1.5
[¢ —a8%671 UCL = 1.7013
\‘ /\ A\ /\/\ J Center _ | g
v \/ \/\/ Line '
Sample:
"=5 LCL = 1.2987

Figure 4-4 How the control chart works.
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by the chart. Note that we may be interested here in determining both whether the past data;
came from a process that was in control and whether future samples from this pracess ing;.
cate statistical control. 3

The most important use of a control chart is to improve the process. We have foung
that. generally,

1. Most processes do not operate in a state of statistical control.

2. Consequently, the routine and attentive use of control charts will identify assigp.
able causes. If these causes can be eliminated from the process, variability will be 4
reduced and the process will be improved. '

This process improvement activity using the control chart is illustrated in Fig. 4-5. Note

that

3. The control chart will only detect assignable causes. Management, operator, and
engineering action will usually be necessary to eliminate the assignable causes.

In identifying and eliminating assignable causes, it is important to find the underlying root
cause of the problem and to attack it. A cosmetic solution will not result in any real, long-
term process improvement. Developing an effective system for corrective action is an
essential component of an effective SPC implementation. :

A very important part of the corrective action process associated with control chart
usage is the Out-of-Control-Action Plan or OCAP. An OCAP is a flow chart or text-
based description of the sequence of activities that must take place following the occur-
rence of an activating event. These are usually out-of-control signals from the control
chart. The OCAP consists of checkpoints, which are potential assignable causes, and fer-
minators, which are actions taken to resolve the out-of-control condition, hopefully by
eliminating the assignable cause. It is very important that the OCAP specify as complete
a set as possible of checkpoints and terminators, and that these be arranged in an order that
facilitates process diagnostic activities. Often, analysis of prior failure modes of the
process and/or product can be helpful in designing this aspect of the OCAP. Furthermore,
an OCAP is a living document in the sense that it will be modified over time as more
knowledge and understanding of the process is gained. Consequently, when a control chart
is introduced, an initial OCAP should accompany it. Control charts without an OCAP are
not likely to be very useful as a process improvement tool.

Input Qutput
—————— Process

Measurement System

Detect
assignable
cause

Verify and
follow up

Implement
corrective
action

Identify root
cause of problem

Figure 4-5 Process improvement using the control chart.
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Figure 4-6 The out-of-controi-action plan (OCAP) for the hard-bake
process.

The OCAP for the hard-bake process is shown in Fig. 4-6. This process has two con-
trollable variables, temperature and time. In this process, the mean flow width is moni-
tored with an x control chart, and the process variability is monitored with a control chart
for the range, or an R chart. Notice that if the R chart exhibits an out-of-control signal,
operating personnel are directed to contact process engineering immediately. If the x con-
trol chart exhibits an out-of-control signal, operators are directed to check process settings
and calibration and then make adjustments to temperature in an effort to bring the process
back into a state of control. If these adjustments are unsuccessful, process engineering per-
sonnel are contacted. .

We may also use the control chart as an estimating device. That is, from a control chart
that exhibits statistical control, we may estimate certain process parameters, such as the
mean, standard deviation, fraction nonconforming or fallout, and so forth. These estimates
may then be used to determine the capability of the process to produce acceptable prod-
ucts. Such process-capability studies have considerable impact on many management
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decision problems that occur over the product cycle, including make or buy decisions, plant
and process improvements that reduce process variability, and contractual agreements with
customers or vendors regarding product quality.

Control charts may be classified into two general types. If the quality characteristic
can be measured and expressed as a number on some continuous scale of measurement, i
is usually called a variable. In such cases, it is convenient to describe the quality charac-
teristic with a measure of central tendency and a measure of variability. Control charts for
central tendency and variability are collectively called variables control charts. The ¥
chart is the most widely used chart for controlling central tendency, whereas charts based
on either the sample range or the sample standard deviation are used to control process
variability. Control charts for variables are discussed in Chapter 5. Many quality charac- .
teristics are not measured on a continuous scale or even a quantitative scale. In these cases,
we may judge each unit of product as either conforming or nonconforming on the basis of
whether or not it possesses certain attributes, or we may count the number of nonconfor-
mities (defects) appearing on a unit of product. Control charts for such quality character-
istics are called attributes control charts and are discussed in Chapter 6.

An important factor in control chart usage is the design of the control chart. By this
we mean the selection of the sample size, control limits, and frequency of sampling. For
example, in the X chart of Fig. 4-3, we specified a sample size of five measurements, three-
sigma control limits, and the sampling frequency to be every hour. In most quality-control
problems, it is customary to design the control chart using primarily statistical considera-
tions. For example, we know that increasing the sample size will decrease the probability
of type II error, thus enhancing the chart’s ability to detect an out-of-control state, and so
forth. The use of statistical criteria such as these along with industrial experience has led
to general guidelines and procedures for designing control charts. These procedures usu-
ally consider cost factors only in an implicit manner. Recently, however, we have begun
to examine control chart design from an economic point of view, considering explicitly
the cost of sampling, losses from allowing defective product to be produced, and the costs
of investigating out-of-control signals that are really “false alarms.”

Another important consideration in control chart usage is the type of variability
exhibited by the process. Fig. 4-7 presents data from three different processes. Figures 4-
7a and 4-7b illustrate stationary behavior. By this we mean that the process data vary
around a fixed mean in a stable or predictable manner. This is the type of behavior that
Shewhart implied was produced by an in-control process.

Even a cursory examination of Figs. 4-7a and 4-7b reveals some important differ-
ences. The data in Fig. 4-7a are uncorrelated; that is, the observations give the appear-
ance of having been drawn at random from a stable population, perhaps a normal
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Figure 4-7 Data from three different processes. (a) Stationary and uncorrelated (white noise). {(b) Stationary and
autocorrelated. (c) Nonstationary.
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distribution. This type of data is referred to by time series analysts as white noise. (Time-
series analysis is a field of statistics devoted exclusively to studying and modeling time-
oriented data.) In this type of process, the order in which the data occur does not tell us
much that is useful to analyze the process. In other words, the past values of the data are
of no help in predicting any of the future values.

Figure 4-7b illustrates stationary but autocorrelated process data. Notice that suc-
cessive observations in these data are dependent; that is, a value above the mean tends to
be followed by another value above the mean, whereas a value below the mean is usually
followed by another such value. This produces a data series that has a tendency to move
in moderately long “runs” on either side of the mean.

Figure 4-7¢ illustrates nonstationary variation. This type of process data occurs fre-
quently in the chemical and process industries. Note that the process is very unstable in
that it drifts or “wanders” about without any sense of a stable or fixed mean. In many
industrial settings, we stabilize this type of behavior by using engineering process con-
trol (such as feedback control). This approach to process control is required when there
are factors that affect the process that cannot be stabilized, such as environmental variables
or properties of raw materials. When the control scheme is effective, the process output
will not look like Fig. 4-7¢ but will hopefully resemble either Fig. 4-7a or 4-7b.

Shewhart control charts are most effective when the in-control process data look like
Fig. 4-7a. By this we mean that the charts can be designed so that their performance is pre-
dictable and reasonable to the user, and that they are effective in reliably detecting out-of-
control conditions. Most of our discussion of control charts in this chapter and in Chapters
5 and 6 will assume that the in-control process data are stationary and uncorrelated.

With some modifications, Shewhart control charts and other types of control charts
can be applied to autocorrelated data. We discuss this in more detail in Part III of the book.
We also discuss feedback control and the use of SPC in systems where feedback control
is employed in Part III.

Control charts have had a long history of use in U.S. industries and in many offshore
industries as well. There are at least five reasons for their popularity.

1. Control charts are a proven technique for improving productivity. A suc-
cessful control chart program will reduce scrap and rework, which are the pri-
mary productivity killers in any operation. If you reduce scrap and rework, then
productivity increases, cost decreases, and production capacity (measured in the
number of good parts per hour) increases.

2. Control charts are effective in defect prevention. The control chart helps
keep the process in control, which is consistent with the “do it right the first time”
philosophy. It is never cheaper to sort out “good” units from “bad” units later on
than it is to build it right initially. If you do not have effective process control, you
are paying someone to make a nonconforming product.

3. Control charts prevent unnecessary process adjustment. A control chart can
distinguish between background noise and abnormal variation; no other device
including a human operator is as effective in making this distinction. If process
operators adjust the process based on periodic tests unrelated to a control chart
program, they will often overreact to the background noise and make unneeded
adjustments. These unnecessary adjustments can actually result in a deterioration
of process performance. In other words, the control chart is consistent with the “if
it isn’t broken, don’t fix it” philosophy.
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4. Control charts provide diagnostic information. Frequently, the pattern of
points on the control chart will contain information of diagnostic value to an
experienced operator or engineer. This information allows the implementation of
a change in the process that improves its performance.

5. Control charts provide information about process capability. The control
chart provides information about the value of important process parameters and
their stability over time. This allows an estimate of process capability to be made.
This information is of tremendous use to product and process designers.

Control charts are among the most important management control tools; they are as
important as cost controls and material controls. Modern computer technology has made
it easy to implement control charts in any type of process, as data collection and analysis
can be performed on a microcomputer or a local area network terminal in real-time, on-
line at the work center. Some additional guidelines for implementing a control chart pro-
gram are given at the end of Chapter 6.

4.3.2 Choice of Control Limits

Specifying the control limits is one of the critical decisions that must be made in design-
ing a control chart. By moving the control limits farther from the center line, we decrease
the risk of a type I error—that is, the risk of a point falling beyond the control limits, indi-
cating an out-of-control condition when no assignable cause is present. However, widen-
ing the control limits will also increase the risk of a type II error—that is, the risk of a point
falling between the control limits when the process is really out of control. If we move the
control limits closer to the center line, the opposite effect is obtained: The risk of type I
error is increased, while the risk of type II error is decreased.

For the X chart shown in Fig. 4-3, where three-sigma control limits were used, if we
assume that the flow width is normally distributed, we find from the standard normal table
that the probability of type I error is 0.0027. That is, an incorrect out-of-control signal or
false alarm will be generated in only 27 out of 10,000 points, Furthermore, the probabil-
ity that a point taken when the process is in control will exceed the three-sigma limits in
one direction only is 0.00135. Instead of specifying the control limit as a multiple of the
standard deviation of x, we could have directly chosen the type I error probability and cal-
culated the corresponding control limit. For example, if we specified a 0.001 type I error
probability in one direction, then the appropriate multiple of the standard deviation would
be 3.09. The control limits for the X chart would then be

UCL =1.5+3.09(0.0671) = 1.7073
LCL = 1.5~3.09(0.0671) =1.2927

These control limits are usually called 0.001 probability limits, although they should log-
ically be called 0.002 probability limits, because the total risk of making a type I error is
0.002. There is only a stight difference between the two limits.

Regardless of the distribution of the quality characteristic, it is standard practice in the
United States to determine the control limits as a multiple of the standard deviation of the
statistic plotted on the chart. The multiple usually chosen is three; hence, three-sigma lim-
its are customarily employed on control charts, regardless of the type of chart employed.
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In the United Kingdom and parts of Western Europe, probability limits are used, with the
standard probability level in each direction being 0.001.

We typically justify the use of three-sigma control limits on the basis that they give
good results in practice. Moreover, in many cases, the true distribution of the quality char-
acteristic is not known well enough to compute exact probability limits. If the distribution
of the quality characteristic is reasonably approximated by the normal distribution, then
there will be little difference between three-sigma and 0.001 probability limits.

Warning Limits on Control Charts

Some analysts suggest using two sets of limits on control charts, such as those shown in
Fig. 4-8. The outer limits—say, at three-sigma—are the usual action limits; that is, when
a point plots outside of this limit, a search for an assignable cause is made and corrective
action is taken if necessary. The inner limits, usually at two-sigma, are called warning
limits. In Fig. 4-8, we have shown the three-sigma upper and lower control limits for the
X chart for flow width. The upper and lower warning limits are located at

UWL =1.5+2(0.0671) =1.6342
LWL =1.5-2(0.0671) = 1.3658

When probability limits are used, the action limits are generally 0.001 limits and the warn-
ing limits are 0.025 limits.

If one or more points fall between the warning limits and the control limits, or very
close to the warning limit, we should be suspicious that the process may not be operating
properly. One possible action to take when this occurs is to increase the sampling fre-
quency and/or the sample size so that more information about the process can be obtained
quickly. Process control schemes that change the sample size and/or the sampling fre-
quency depending on the position of the current sample value are called adaptive or vari-
able sampling interval (or variable sample size, etc.) schemes. These techniques have
been used in practice for many years and have recently been studied extensively by
researchers in the field. We will discuss this technique again in Part III of this book.

The use of warning limits can increase the sensitivity of the control chart; that is, it
can allow the control chart to signal a shift in the process more quickly. One of their dis-
advantages is that they may be confusing to operating personnel. This is not usually a seri-
ous objection, however, and many practitioners use warning limits routinely on control
charts. A more serious objection is that although the use of warning limits can improve the
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sensitivity of the chart, they also result in an increased risk of false alarms. We will di5. 4
cuss the use of sensitizing rules (such as warning limits) more thoroughly in Section 4-3 6.

4-3.3 Sample Size and Sampling Frequency

In designing a control chart, we must specify both the sample size to use and the fre. 3
quency of sampling. In general, larger samples will make it easier to detect small shifis
in the process. This is demonstrated in Fig. 4-9, where we have plotted the operating char-
acteristic curve for the X chart in Fig. 4-3 for various sample sizes. Note that the probabil-
ity of detecting a shift from 1.500 microns to 1.650 microns (for example) increases as the
sample size n increases. When choosing the sample size, we must keep in mind the size
of the shift that we are trying to detect. If the process shift is relatively large, then we use
smaller sample sizes than those that would be employed if the shift of interest were rela-
tively small.

We must also determine the frequency of sampling. The most desirable situation from
the point of view of detecting shifts would be to take large samples very frequently; how-
ever, this is usually not economically feasible. The general problem is one of allocating
sampling effort. That is, either we take small samples at short intervals or larger samples
at Jonger intervals. Current industry practice tends to favor smaller, more frequent sam-
ples, particularly in high-volume manufacturing processes, or where a great many types of
assignable causes can occur. Furthermore, as automatic sensing and measurement tech-
nology develops, it is becoming possible to greatly increase sampling frequencies.
Ultimately, every unit can be tested as it is manufactured. Automatic measurement systems
and microcomputers with SPC software applied at the work center for real-time on-line
process control is an effective way to apply statistical process control.

Another way to evaluate the decisions regarding sample size and sampling frequency
is through the average run length (ARL) of the control chart. Essentially, the ARL is the
average number of points that must be plotted before a point indicates an out-of-control
condition. If the process observations are uncorrelated, then for any Shewhart control
chart, the ARL can be calculated easily from

S

ARL =~ (4-2)

where p is the probability that any point exceeds the control limits. This equation can be
used to evaluate the performance of the control chart.

To illustrate, for the X chart with three-sigma limits, p = 0.0027 is the probability that
a single point falls outside the limits when the process is in control. Therefore, the aver-
age run length of the x chart when the process is in control (called ARLy) is

That is, even if the process remains in control, an out-of-control signal will be generated
every 370 samples, on the average.




The use of average run lengths to describe the performance of control charts has been
subjected to criticism in recent years. The reasons for this arise because the distribution of
run length for a Shewhart control chart is a geometric distribution (refer to Section 2-2.4).
Consequently, there are two concerns with ARL: (1) the standard deviation of the run
length is very large, and (2) the geometric distribution is very skewed, so the mean of the
distribution (the ARL) is not necessarily a very “typical” value of the run length.

For example, consider the Shewhart X control chart with three-sigma limits. When the
process is in control, we have noted that p = 0.0027 and the in-control ARLg is ARLy =
1/p = 1/0.0027 = 370. This is the mean of the geometric distribution. Now the standard
deviation of the geometric distribution is

J(1=p) /p=/(1-0.0027) /0.0027 = 370

That is, the standard deviation of the geometric distribution in this case is approximately
equal to its mean. As a result, the actual ARL,, observed in practice for the Shewhart X con-
trol chart will likely vary considerably. Furthermore, for the geometric distribution with p
=0.0027, the 10th and 50th percentiles of the distribution are 38 and 256, respectively. This
means that approximately 10% of the time the in-control run length will be less than or
equal to 38 samples and 50% of the time it will be less than or equal to 256 samples. This
occurs because the geometric distribution with p = 0.0027 is quite skewed to the right.

It is also occasionally convenient to express the performance of the control chart in
terms of its average time to signal (ATS). If samples are taken at fixed intervals of time
that are 4 hours apart, then

ATS = ARLA (4-3)

Consider the hard-bake process discussed earlier, and suppose we are sampling every
hour. Equation 4-3 indicates that we will have a false alarm about every 370 hours on the
average.

Now consider how the control chart performs in detecting shifts in the mean. Suppose
we are using a sample size of n =5 and that when the process goes out of control the mean
shifts to 1.725 microns. From the operating characteristic curve in Fig. 4-9 we find that if
the process mean is 1.725 microns, the probability of X falling between the control limits
is approximately 0.50. Therefore, p in equation 4-2 is 0.50, and the out-of-control ARL
(called ARL,) is

ARL,=—=—=2

That is, the control chart will require two samples to detect the process shift, on the aver-
age, and since the time interval between samples is £ = | hour, the average time required
to detect this shift is

ATS = ARLh =2(1) =2 hours
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Suppose that this is unacceptable. because production of wafers with mean flow width of
1.725 microns results in excessive scrap costs and can result in further upstream mapy. *
facturing problems. How can we reduce the time needed to detect the out-of-control cop. -
dition? One method is to sample more frequently. For example, if we sample every hajf -
hour, then the average time to signal for this scheme is ATS = ARL, & = 2() = 1; that is,
only one hour will elapse (on the average) between the shift and its detection. The seconq
possibility is to increase the sample size. For example, if we use n = 10, then Fig, 4.9
shows that the probability of ¥ falling between the control limits when the process meap
is 1.725 microns is approximately 0.1, so that p = 0.9, and from equation 4-2 the out-of.
control ARL or ARL is

ARL, =—1-=—1—=l.11
p 09

and, if we sample every hour, the average time to signal is
ATS = ARL;h=1.11(1)=1.11 hours

Thus, the larger sample size would allow the shift to be detected about twice as quickly as
the old one. If it became important to detect the shift in the (approximately) first hour after
it occurred, two control chart designs would work:

Design 1 Design 2

Sample Size: n =35 Sample Size: n = 10
Sampling Frequency: every half hour Sampling Frequency: every hour

To answer the question of sampling frequency more precisely, we must take several
factors into account, including the cost of sampling, the losses associated with allowing the
process to operate out of control, the rate of production, and the probabilities with which
varjous types of process shifts occur. We discuss various methods for selecting an appro-
priate sample size and sampling frequency for a control chart in the next four chapters.

4-3.4 Rational Subgroups

A fundamental idea in the use of control charts is the collection of sample data according
to what Shewhart called the rational subgroup concept. To illustrate this concept, sup-
pose that we are using an X control chart to detect changes in the process mean. Then the
rational subgroup concept means that subgroups or samples should be selected so that if
assignable causes are present, the chance for differences between subgroups will be max-
imized, while the chance for differences due to these assignable causes within a subgroup
will be minimized.

When control charts are applied to production processes, the time order of production
is a logical basis for rational subgrouping. Even though time order is preserved, it is still
possible to form subgroups erroneously. If some of the observations in the sample are
taken at the end of one shift and the remaining observations are taken at the start of the
next shift, then any differences between shifts might not be detected. Time order is fre-
quently a good basis for forming subgroups because it allows us to detect assignable
causes that occur over time.
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Two general approaches to constructing rational subgroups are used. In the first
approach, each sample consists of units that were produced at the same time (or as closely
together as possible). Ideally, we would like to take consecutive units of production. This
approach is used when the primary purpose of the control chart is to detect process shifts.
It minimizes the chance of variability due to assignable causes within a sample, and it
maximizes the chance of variability benveen samples if assignable causes are present. It
also provides a better estimate of the standard deviation of the process in the case of vari-
ables control charts. This approach to rational subgrouping essentially gives a “snapshot”
of the process at each point in time where a sample is collected.

Figure 4-10 illustrates this type of sampling strategy. In Fig. 4-10a we show a process
for which the mean experiences a series of sustained shifts, and the corresponding obser-
vations obtained from this process at the points in time along the horizontal axis, assum-
ing that five consecutive units are selected. Figure 4-10b shows the X control chart and
an R chart (or range chart) for these data. The center line and control limits on the R
chart are constructed using the range of each sample in the upper part of the figure (details
will be given in Chapter 5). Note that although the process mean is shifting, the process
variability is stable. Furthermore, the within-sample measure of variability is used to con-
struct the control limits on the X chart. Note that the X chart in Fig. 4-10b has points out of
control corresponding to the shifts in the process mean.

In the second approach, each sample consists of units of product that are representa-
tive of all units that have been produced since the last sample was taken. Essentially, each
subgroup is a random sample of all process output over the sampling interval. This
method of rational subgrouping is often used when the control chart is employed to make
decisions about the acceptance of all units of product that have been produced since the
last sample. In fact, if the process shifts to an out-of-control state and then back in control
again between samples, it is sometimes argued that the first method of rational subgroup-
ing defined above will be ineffective against these types of shifts, and so the second
method must be used.

When the rational subgroup is a random sample of all units produced over the sam-
pling interval, considerable care must be taken in interpreting the control charts. If the
process mean drifts between several levels during the interval between samples, this may
cause the range of the observations within the sample to be relatively large, resulting in
wider limits on the X chart. This scenario is illustrated in Fig. 4-11. In fact, we can often
make any process appear to be in statistical control just by stretching out the inter-
val between observations in the sample. It is also possible for shifts in the process aver-
age to cause points on a control chart for the range or standard deviation to plot out of
control, even though there has been no shift in process variability.

There are other bases for forming rational subgroups. For example, suppose a process
consists of several machines that pool their output into a common stream. If we sample
from this common stream of output, it will be very difficult to detect whether or not some
of the machines are out of control. A logical approach to rational subgrouping here is to
apply control chart techniques to the output for each individual machine. Sometimes this
concept needs to be applied to different heads on the same machine, different work sta-
tions, different operators, and so forth. In many situations the rational subgroup will con-
sist of a single observation. This situation occurs frequently in the chemical and process
industries where the quality characteristic of the product changes relatively slowly and
samples taken very close together in time are virtually identical, apart from measurement
or analytical error.
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Figure 4-10 The “snapshot” approach to rational Figure 4-11 The random sample approach to
subgroups. (a) Behavior of the process mean. rational subgroups. (a) Behavior of the process
(b) Corresponding % and R control charts. mean. (b) Corresponding X and R control charts.

The rational subgroup concept is very important. The proper selection of samples
requires careful consideration of the process, with the objective of obtaining as much use-
ful information as possible from the control chart analysis.

4-3.5 Analysis of Patterns on Control Charts

A control chart may indicate an out-of-control condition either when one or more points
fall beyond the control limits or when the plotted points exhibit some nonrandom pattern
of behavior. For example, consider the X chart shown in Fig. 4-12. Although all 25 points
fall within the control limits, the points do not indicate statistical control because their pat-
tern is very nonrandom in appearance. Specifically, we note that 19 of 25 points plot below
the center line, while only six of them plot above. If the points are truly random, we should

“expect a more even distribution of them above and below the center line. We also observe

that following the fourth point, five points in a row increase in magnitude. This arrange-
ment of points is called a run. Since the observations are increasing, we could call this a
run up. Similarly, a sequence of decreasing points is called a run down. This control chart
has an unusually long run up (beginning with the fourth point) and an unusually long run
down (beginning with the eighteenth point).

In general, we define a run as a sequence of observations of the same type. In addi-
tion to runs up and runs down, we could define the types of observations as those above
and below the center line, respectively, so that two points in a row above the center line
would be a run of length 2.
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Figure 4-12 An X control chart. Figure 4-13  An X chart with a cyclic pattern.

A run of length 8 or more points has a very low probability of occurrence in a random
sample of points. Consequently, any type of run of length 8 or more is often taken as a sig-
nal of an out-of-control condition. For example, eight consecutive points on one side of
the center line may indicate that the process is out of control.

Although runs are an important measure of nonrandom behavior on a control chart,
other types of patterns may also indicate an out-of-control condition. For example, consider
the x chart in Fig. 4-13. Note that the plotted sample averages exhibit a cyclic behavior, yet
they all fall within the control limits. Such a patten may indicate a problem with the
process such as operator fatigue, raw material deliveries, heat or stress buildup, and so forth.
Although the process is not really out of control, the yield may be improved by elimination
or reduction of the sources of variability causing this cyclic behavior (see Fig. 4-14).

The problem is one of pattern recognition—that is, recognizing systematic or non-
random pattemns on the control chart and identifying the reason for this behavior. The abil-
ity to interpret a particular pattern in terms of assignable causes requires experience and
knowledge of the process. That is, we must not only know the statistical principles of con-
trol charts, but we must also have a good understanding of the process. We discuss the
interpretation of patterns on control charts in more detail in Chapter 5.

LSL

i
usL

(b}

Figure 4-14  (a) Variability with the cyclic pattern. (b) Variability with
the cyclic pattern eliminated.
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Figure 4-15 The Western Electric or zone rules, with the last four points
showing a violation of the rule 3.

The Western Electric Handbook (1956) suggests a set of decision rules for detecting
nonrandom patterns on control charts. Specifically, it suggests concluding that the process
is out of control if either

1. One point plots outside the three-sigma control limits;
2. Two out of three consecutive points plot beyond the two-sigma warning limits;

3. Four out of five consecutive points plot at a distance of one-sigma or beyond from
the center line;

or
4. Eight consecutive points plot on one side of the center line.

Those rules apply to one side of the center line at a time. Therefore, a point above the
upper warning limit followed immediately by a point below the lower warning limit would
not signal an out-of-control alarm. These are often used in practice for enhancing the sen-
sitivity of control charts. That is, the use of these rules can allow smaller process shifts to
be detected more quickly than would be the case if our only criterion was the usual three-
sigma control limit violation.

Figure 4-15 shows an X control chart with the one-sigma, two-sigma, and three-sigma
limits used in the Western Electric procedure. Note that these limits partition the control
chart into three zones A, B, and C on each side of the center line. Consequently, the
Western Electric rules are sometimes called the zone rules for control charts. Note that the
last four points fall in zone B or beyond. Thus, since four of five consecutive points exceed
the one-sigma limit, the Western Electric procedure will conclude that the pattern is non-
random and the process is out of control.

4-3.6 Discussion of Sensitizing Rules for Control Charts

As may be gathered from earlier sections, several criteria may be applied simultaneously
to a control chart to determine whether the process is out of control. The basic criterion is
one or more points outside of the control limits. The supplementary criteria are sometimes
used to increase the sensitivity of the control charts to a small process shift so that we may
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Table 4-1 Some Sensitizing Rules for Shewhart Control Charts

Standard Action Signal: 1. One or more points outside of the control limits.

. Two of three consecutive points outside the
two-sigma warning limits but still inside the

[N

contro} limits. Western
3. Four of five consecutive points beyond the El:l(;:w

one-sigma limits.
4. A run of eight consecutive points on one side of the
center line. |
5. Six points in a row steadily increasing or decreasing.

6. Fifteen points in a row in zone C (both above and
below the center line).

7. Fourteen points in a row alternating up and down.

8. Eight points in a row on both sides of the center line
with none in zone C.

9. An unusual or nonrandom pattern in the data.
10. One or more points near a warning or control limit.

respond more quickly to the assignable cause. Some of the sensitizing rules that are
widely used in practice are shown in Table 4-1. For a good discussion of some of these
rules, see Nelson (1984). Frequently, we will inspect the control chart and conclude that
the process is out of control if any one or more of the criteria in Table 4-1 are met.

When several of these sensitizing rules are applied simultaneously, we often use a
graduated response to out-of-control signals. For example, if a point exceeded a control
limit, we would immediately begin to search for the assignable cause, but if one or two
consecutive points exceeded only the two-sigma warning limit, we might increase the fre-
quency of sampling from every hour—say, to every 10 minutes. This adaptive sampling
response might not be as severe as a complete search for an assignable cause, but if the
process were really out of control, it would give us a high probability of detecting this sit-
uation more quickly than we would by maintaining the longer sampling interval.

In general, care should be exercised when using several decision rules simultaneously.
Suppose that the analyst uses k decision rules and that criterion i has type I error proba-
bility ¢;. Then the overall type I error or false-alarm probability for the decision based on
all & tests is

a=1-T1(i-a) (4-4)

provided that all k decision rules are independent. However, the independence assumption
is not valid with the usual sensitizing rules. Furthermore, the value of ¢; is not always
clearly defined for the sensitizing rules, because these rules involve several observations.

Champ and Woodall (1987) investigated the average run length performance for the
Shewhart control chart with various sensitizing rules. They found that the use of these
rules does improve the ability of the control chart to detect smaller shifts, but the incon-
trol average run length can be substantially degraded. For example, assuming independent
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process data and using a Shewhart control chart with the Western Electric rules results iy Q
an in-control ARL of 91.25, in contrast to 370 for the Shewhart control chart alone. '

Some of the individual Western Electric rules are particularly troublesome. An illys.
tration is the rule of several (usually seven or eight) consecutive points which eithe;
increase or decrease. This rule is very ineffective in detecting a trend, the situation for 7
which it was designed. It does, however, greatly increase the false-alarm rate. See Davig
and Woodall (1988) for more details.

4-3.7 Phase I and Phase II of Control Chart Application

Standard control chart usage involves two distinct phases, with two different objectives. In
phase 1, a set of process data is gathered and analyzed all at once in a retrospective analy-
sis, constructing trial control limifs to determine if the process has been in control over the
period of time where the data were collected, and to see if reliable control limits can be
established to monitor future production. This is typically the very first thing that is done
when control charts are applied to any process. Control charts are used primarily in phase
I to assist operating personnel in bringing the process into a state of statistical control,
Phase II beings after we have a “clean™ set of process data gathered under stable condi-
tions and representative of in-control process performance. In phase II, we use the control
chart to menitor the process by comparing the sample statistic for each successive sam-
ple as it is drawn from the process to the control limits.

Thus in phase I, we are comparing a collection of, say, m points to a set of control lim-
its computed from those points, Typically m = 20 or 25 subgroups are used in phase I. It
is fairly typical in phase I to assume that the process is initially out of control, so the objec-
tive of the analyst is to bring the process into a state of statistical control. Control limits
are calculated based on the m subgroups and the data plotted on the control charts. Points
that are outside the control limits are investigated, looking for potential assignable causes.
Any assignable causes that are identified are worked on by engineering and operating per-
sonnel in an effort to eliminate them. Points outside the control limits are then excluded
and a new set of revised control limits calculated. Then new data are collected and com-
pared to these revised limits. Sometimes this type of analysis will require several cycles in
which the control chart is employed, assignable causes are detected and corrected, revised
control limits are calculated, and the out-of-control action plan is updated and expanded.
Eventually the process is stabilized, and a clean set of data that represents in-control
process performance is obtained.

Generally, Shewhart control charts are very effective in phase I because they are
easy to construct and interpret, and because they are effective in detecting both large,
sustained shifts in the process parameters and outliers (single excursions that may have
resulted from assignable causes of short duration), measurement errors, data recording
and/or transmission errors, and the like. Furthermore, patterns on Shewhart control
charts are often easy to interpret and have direct physical meaning. The sensitizing rules
discussed in the previous sections are also easy to apply to Shewhart charts. (This is an
optional feature in most SPC software.) The types of assignable causes that usually
occur in Phase 1 result in fairly large process shifts—exactly the scenario in which the
Shewhart control chart is most effective. Average run length is not usually a reasonable
performance measure for phase I; we are typically more interested in the probability that
an assignable cause will be detected than in the occurrence of false alarms. For good dis-
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cussions of phase I control chart usage and related matters, see the papers by Woodall
{2000), Borror and Champ {2001), Boyles (2000}, and Champ and Chou (2003), and the
standard ANSI/ASQC B1-133-1996 Quality Control Chart Methodologies (this can be
downloaded at http://e-standards.asq.org).

In phase II we usually assume that the process is reasonably stable. Often, the assign-
able causes that occur in phase II result in smaller process shifts, because (hopefully) most
of the really ugly sources of variability have been systematically removed during phase 1.
Our emphasis is now on process monitoring, not on bringing an unruly process into con-
trol. Average run length is a valid basis for evaluating the performance of a control chart
in phase II. Shewhart control charts are much less likely to be effective in phase II because
they are not very sensitive to small to moderate size process shifts; that is, their ARL per-
formance is relatively poor. Attempts to solve this problem by employing sensitizing rules
such as those discussed in the previous section are likely to be unsatisfactory, because the
use of these supplemental sensitizing rules increases the false-alarm rate of the Shewhart
control chart. (Recall the discussion of the Champ and Woodall (1987) paper in the previ-
ous section.) The routine use of sensitizing rules to detect small shifts or to react more
quickly to assignable causes in phase II should be discouraged. The cumulative sum and
EWMA control charts discussed in Chapter 8 are much more likely to be effective in
phase IL

4-4 THE REST OF THE “MAGNIFICENT SEVEN”

Although the control chart is a very powerful problem-solving and process improvement
tool, it is most effective when its use is fully integrated into a comprehensive SPC pro-
gram. The seven major SPC problem-solving tools should be widely taught throughout the
organization and used routinely to identify improvement opportunities and to assist in
reducing variability and eliminating waste. These “magnificent seven,” introduced in
Section 4-1, are listed again here for convenience:

1. Histogram or stem-and-leaf plot
Check sheet
Pareto chart

Cause-and-effect diagram
Defect concentration diagram

SR W

Scatter diagram
7. Control chart

We have already introduced the histogram and the stem-and-leaf plot (Chapter 2), and
control chart. In this section we will briefly illustrate the rest of the tools.

Check Sheet

In the early stages of an SPC implementation, it will often become necessary to collect
either historical or current operating data about the process under investigation. A check
sheet can be very useful in this data collection activity. The check sheet shown in Fig. 4-16
was developed by an engineer at an aerospace firm who was investigating the various
types of defects that occurred on a tank used in one of their products with a view toward
improving the process. The engineer designed this check sheet to facilitate summarizing
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CHAPTER OVERVIEW AND LEARNING OBJECTIVES

In previous chapters we have addressed process monitoring and control primarily from the
univariate perspective; that is, we have assumed that there is only one process output vari-
able or quality characteristic of interest. In practice, however, many if not most process
monitoring and control scenarios involve several related variables. Although applying uni-
variate control charts to each individual variable is a possible solution, we will see that this
is inefficient and can lead to erroneous conclusions. Multivariate methods that consider the
variables jointly are required.

This chapter presents control charts that can be regarded as the multivariate extensions
of some of the univariate charts of previous chapters. The Hotelling T2 chart is the analog
of the Shewhart ¥ chart. We will also discuss a multivariate version of the EWMA control
chart, and some methods for monitoring variability in the multivariate case. These multi-
variate control charts work well when the number of process variables is not too largé—
say, 10 or fewer. As the number of variables grows, however, traditional multivariate.
control charts lose efficiency with regard to shift detection. A popular approach in thes¢
situations is to reduce the dimensionality of the problem. We show how this can be don¢
with principal components.
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After careful study of this chapter you should be able to do the following:

1. Understand why applying several univariate control charts simultaneously to a set
of related quality characteristics may be an unsatisfactory monitoring procedure

2. How the multivariate normal distribution is used as a model for multivariate
process data

3. Know how to estimate the mean vector and covariance matrix from a sample of
multivariate observations

4. Know how to set up and use a chi-square control chart
5. Know how to set up and use the Hotelling 7 control chart

6. Know how to set up and use the multivariate exponentially weighted moving
average (MEWMA) control chart

7. Know how to use multivariate control charts for individual observations

*®

Know how to find the phase I and phase II limits for multivariate control charts
9. Use control charts for monitoring multivariate variability

10. Understand the basis of the regression adjustment procedure and know how to
apply regression adjustment in process monitoring

11. Understand the basis of principal components and know how to apply principal
components in process monitoring

12. Understand the basis of profile monitoring

10-1 THE MULTIVARIATE QUALITY-CONTROL PROBLEM

There are many situations in which the simultaneous monitoring or control of two or more
related quality characteristics is necessary. For example, suppose that a bearing has both an
inner diameter (x;) and an outer diameter (x,) that together determine the usefulness of the
part. Suppose that x; and x, have independent normal distributions. Because both quality
characteristics are measurements, they could be monitored by applying the usual X chart to
each characteristic, as illustrated in Fig. 10-1. The process is considered to be in control
only if the sample means x| and X, fall within their respective control limits. This is equiv-
alent to the pair of means (X, X7) plotting within the shaded region in Fig. 10-2.

Monitoring these two quality characteristics independently can be very misleading.
For example, note from Fig. 10-2 that one observation appears somewhat unusual with
respect to the others. That point would be inside the control limits on both of the univari-
ate X charts for x; and x,, yet when we examine the two variables simultaneously, the
unusual behavior of the point is fairly obvious. Furthermore, note that the probability that
either X or x, exceeds three-sigma control limits is 0.0027. However, the joint probabil-
ity that both variables exceed their control limits simultaneously when they are both in
control is (0.0027)(0.0027) = 0.00000729, which is considerably smaller than 0.0027.
Furthermore, the probability that both x; and X, will simuitaneously plot inside the con-
trol limits when the process is really in control is (0.9973)(0.9973) = 0.99460729.
Therefore, the use of two independent X charts has distorted the simultaneous monitoring
of X and X,, in that the type I error and the probability of a point correctly plotting in con-
trol are not equal to their advertised levels for the individual control charts. However, note
that because the variables are independent the univariate control chart limits could be
adjusted to account for this.
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This distortion in the process-monitoring procedure increases as the number of quality
characteristics increases. In general, if there are p statistically independent quality charac-
teristics for a particular product and if an x chart with P{type [ error} = a is maintained
on each, then the true probability of type I error for the joint control procedure is
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o' =1-(1-a)” (10-1)

and the probability that all p means will simultaneously plot inside their control limits
when the process is in control is

P{all p means plot in control} = (1-a)” (10-2)

Clearly, the distortion in the joint control procedure can be severe, even for moderate values
of p. Furthermore, if the p quality characteristics are not independent, which usually would
be the case if they relate to the same product, then equations 10-1 and 10-2 do not hold, and
we have no easy way even to measure the distortion in the joint control procedure.

Process-monitoring problems in which several related variables are of interest are
sometimes called multivariate quality-control (or process-monitoring) problems. The
original work in multivariate quality control was done by Hotelling (1947), who applied
his procedures to bombsight data during World War II. Subsequent papers dealing with
control procedures for several related variables include Hicks (1955), Jackson (1956,
1959, 1985), Crosier (1988), Hawkins (1991, 1993b), Lowry et al. (1992), Lowry and
Montgomery (1995), Pignatiello and Runger (1990), Tracy, Young, and Mason (1992),
Montgomery and Wadsworth (1972); and Alt (1985). This subject is particularly impor-
tant today, as automatic inspection procedures make it relatively easy to measure many
parameters on each unit of product manufactured. Many chemical and process plants and
semiconductor manufacturers (for examples) routinely maintain manufacturing databases
with process and quality data on hundreds of variables. Often the total size of these data-
bases is measured in millions of individual records. Monitoring or analysis of these data
with univariate SPC procedures is often ineffective. The use of multivariate methods has
increased greatly in recent years for this reason.

10-2 DESCRIPTION OF MULTIVARIATE DATA
10-2.1 The Multivariate Normal Distribution
In univariate statistical quality control, we generally use the normal distribution to

describe the behavior of a continuous quality characteristic. The univariate normal proba-
bility density function is

- —ee < x < o0 (10-3)

The mean of the normal distribution is x and the variance is 6°. Note that (apart from the
minus sign) the term in the exponent of the normal distribution can be written as follows:

(x-w)(0®) " (x~n) (10-4)
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Figure 10-3 A multivariate normal distribution with p = 2 variables
(bivariate normal).

This quantity measures the squared standardized distance from x to the mean L1, where by
the term “standardized” we mean that the distance is expressed in standard deviation units,

This same approach can be used in the multivariate case. Suppose that we have p vari-
ables, given by xy, x,, . . . , x,,. Arrange these variables in a p-component vector X’ = {x,,
X3 .o Xp) Let fff = [y, iy, . . ., 14,] be the vector of the means of the x’s, and let the
variances and covariances of the random variables in x be contained in a p X p covariance
matrix X. The main diagonal elements of Z are the variances of the x’s and the off-diag-
onal elements are the covariances. Now the squared standardized (generalized) distance
from x to g is

(x-S " (x~p) (105)

The multivariate normal density function is obtained simply by replacing the standardized
distance in equation 10-4 by the multivariate generalized distance in equation 10-5 and
changing the constant term 1/¥276? to a more general form that makes the area under the
probability density function unity regardless of the value of p. Therefore, the multivari-
ate normal probability density function is

1 -2 (x-m)’'s™! (x-m)

M G

(10-6)

where ~o <x;< o0, j=1,2,...,p

A multivariate normal distribution for p = 2 variables (called a bivariate normal) is
shown in Fig. 10-3. Note that the density function is a surface. The correlation coefficient
between the two variables in this example is 0.8, and this causes the probability to con-
centrate closely along a line.

10-2.2 The Sample Mean Vector and Covariance Matrix

Suppose that we have a random sample from a multivariate normal distribution—say,

X, Xp5e .0 X,
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where the ith sample vector contains observations on each of the p variables x;;, x;p, . . -,
x;,- Then the sample mean vector is

| ,
X==Yx (10-7)
n .

and the sample covariance matrix is

’

s=—‘—1 (%, —%)(x, - %) (10-8)

M=

That is, the sample variances on the main diagonal of the matrix S are computed as

$? =—1—1§( %) (10-9)

and the sample covariances are

(x,-j —%;)(xu — %) | (10-10)

II M=

s _L
jk 1

We can show that the sample mean vector and sample covariance matrix are unbiased
estimators of the corresponding population quantities; that is,

E(X)=p and E(S)=%

10.3 THE HOTELLING T? CONTROL CHART

The most familiar multivariate process-monitoring and control procedure is the Hotelling
T? control chart for monitoring the mean vector of the process. It is a direct analog of the
univariate Shewhart ¥ chart. We present two versions of the Hotelling T chart: one for
subgrouped data, and another for individual observations.

10-3.1 Subgrouped Data

Suppose that two quality characteristics x; and x; are jointly distributed according to the
bivariate normal distribution (see Fig. 10-3). Let g, and y, be the mean values of the
quality characteristics, and let ¢, and o; be the standard deviations of x; and x,, respec-
tively. The covariance between x, and x, is denoted by ©),. We assume that ¢}, 03, and G},
are known. If X, and X, are the sample averages of the two quality characteristics com-
puted from a sample of size n, then the statistic
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_ n 2= _ 2 2= _ 2
——__0'120'5—0'122 [GZ(xl ) +0i (% - 1)

(=181

X

~200,(% —~ (%, — )] -~ (10-11)

will have a chi-square distribution with 2 degrees of freedom. This equation can be used
as the basis of a control chart for the process means (; and ,. If the process means remain
at the values y; and j,, then values of x3 should be less than the upper control limit
UCL= xfl » Where xi » is the upper « percentage point of the chi-square distribution with
2 degrees of freedom. If at least one of the means shifts to some new (out-of-control)
value, then the probability that the statistic x%, exceeds the upper control limit increases.

The process monitoring procedure may be represented graphically. Consider the case
in which the two random variables x| and x, are independent; that is, 0}, = 0. If 6, =0,
then equation 10-11 defines an ellipse centered at (1, 1) with principal axes parallel to
the X, X, axes, as shown in Fig. 10-4. Taking x3 in equation 10-11 equal to xiz implies
that a pair of sample averages (X, X,) yielding a value of 3 plotting inside the ellipse indi-
cates that the process is in control, whereas if the corresponding value of x3 plots outside
the ellipse the process is out of control. Figure 10-4 is often called a control ellipse.
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Figure 10-5 A control ellipse for two dependent variables.

In the case where the two quality characteristics are dependent, then 0}, # 0, and the
corresponding control ellipse is shown in Fig. 10-5. When the two variables are dependent, .
the principal axes of the ellipse are no longer parallel to the X, X, axes. Also, note that sam-
ple point number 11 plots outside the control ellipse, indicating that an assignable cause is
present, yet point 11 is inside the control limits on both of the individual control charts for
x; and X,. Thus there is nothing apparently unusual about point 11 when viewed individu-
ally, yet the customer who received that shipment of material would quite likely observe
very different performance in the product. It is nearly impossible to detect an assignable
cause resulting in a point such as this one by maintaining individual control charts.

Two disadvantages are associated with the control ellipse. The first is that the time
sequence of the plotted points is lost. This could be overcome by numbering the plotted
points or by using special plotting symbols to represent the most recent observations. The
second and more serious disadvantage is that it is difficult to construct the ellipse for more
than two quality characteristics. To avoid these difficulties, it is customary to plot the val-
ues of x4 computed from equation 10-11 for each sample on a control chart with only an
upper control limit at 2 ,, as shown in Fig. 10-6. This control chart is usually called the
chi-square control chart. Note that the time sequence of the data is preserved by this con-
trol chart, so that runs or other nonrandom patterns can be investigated. Furthermore, it has
the additional advantage that the “state” of the process is characterized by a single num-
ber (the value of the statistic 3). This is particularly helpful when there are two or more
quality characteristics of interest.
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Figure 10-6 A chi-square control chart for p = 2 quality charac-
teristics.

It is possible to extend these results to the case where p related quality characteristics -
are controlled jointly. It is assumed that the joint probability distribution of the p quality
characteristics-is the p-variate normal distribution. The procedure requires computing the
sample mean for each of the p quality characteristics from a sample of size n. This set of
quality characteristic means is represented by the p X 1 vector

»
il

(%~ ) (10-12)

where (' =\, iy, . . ., Hy] is the vector of in-control means for each quality characteris-
tic and X is the covariance matrix. The upper limit on the control chart is :

UCL=yx2,
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Estlmatmg pand
In practice, it is usually necessary to estimate & and X from the analysis of prehmmary :
samples of size n, taken when the process is assumed to be in control. Suppose that m such =
samples are available. The sample means and variances are calculated from each sample :
as usual; that is, ‘

13 ' j=L2,...p i
Sk = &% 10-14)
X jk nE’qu {k=1,2,...,m (0")
, L 2 [j=12...p , ik
Sk = n_lgi(xijk "xjk) {k: L2, mm (1(4).1’,‘5’)

where x;; is the ith observation on the jth quality characteristic in the kth sample. The
covariance between quality characteristic j and quality characteristic / in the kth sample is

k=12,..m
S jhk ‘n_lg’( ik~ )( ik — k) {j#h (10-16)

The statistics Xy, jk, and s are then averaged over all m samples to obtain

I .
Tj=—X%; j=12..p (10-17a)
m =)
12 .
P==Ys% j=L2..p (10-17b)
m =
and
I . |
Sip=— XS J#h (10-17¢)
m =

The (X;} are the elements of the vector ¥, and the p X p average of sample covariance
matrices S is formed as

;o S12 Sia Sip ,
-2 - .
S s ree s
S= : s 2p (10-18)
S3 : :
-2
Sp

The average of the sample covariance matrices S is an unbiased estimate of X when the
process is in control.
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The T? Control Chart .

Now suppose that S from equation 10-18 is used to estimate X and that the vector § is
taken as the in-control value of the mean vector of the process. If we replace 4 with ¥ ag
Z with S in equation 10-12, the test statistic now becomes

T2 = n(%~%) $7'(x-%) (10-19)

In this form, the procedure is usually called the Hotelling T2 control chart.

Alt (1985) has pointed out that in multivariate quality control applications one must
be careful to select the control limits for Hotelling’s 72 statistic (equation 10-19) based on
how the chart is being used. Recall that there are two distinct phases of control chart usage,
Phase 1 is the use of the charts for establishing control; that is, testing whether the process
was in control when the m preliminary subgroups were drawn and the sample statistics X
and S computed. The objective in phase I is to obtain an in-control set of observations so
that control limits can be established for phase II, which is the monitoring of future pro-
duction. Phase I analysis is sometimes called a retrospective analysis.

The phase I control limits for the 72 control chart are given by

_plm=D(n-1)
UL = 1 Fepmm-m=pe

LCL=0 (10-20)

In phase II, when the chart is used for monitoring future production, the control lim-
its are as follows:

UCL = p(m+1)(n-1)
mn—-m-p+1

LCL=0 (10-21)

o, p,mn—m~p+1

Note that the UCL in equation 10-21 is just the UCL in equation 10-20 multiplied by
m+ Um-1.

When g and Z are estimated from a large number of preliminary samples, it is cus-
tomary to use UCL = xﬁ‘,, as the upper control limit in both phase I and phase 1L
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Retrospective analysis of the preliminary samples to test for statistical control and estab-
lish control limits also occurs in the univariate control chart setting. For the X chart, it is
well known that if we use m > 20 or 25 preliminary samples, the distinction between phase
I and phase 11 limits is usually unnecessary, because the phase I and phase II limits will
nearly coincide. However, with multivariate control charts, we must be careful.

Lowry and Montgomery (1995) show that in many situations a large number of pre-
liminary samples would be required before the exact phase II control limits are well
approximated by the chi-square limits. These authors present tables indicating the recom-
mended minimum value of m for sample sizes of n =3, 5, and 10 and forp =2, 3, 4, 5,
10, and 20 quality characteristics. The recommended values of m are always greater than
20 preliminary samples, and often more than 50 samples.

EXAMPLE 10-]1  cerererersecensaracocsscscssascacessscscrsassasartossassassassassssses
The tensile strength and diameter of a textile fiber are two important quality characteris-
tics that are to be jointly controlled. The quality engineer has decided to use r = 10 fiber
specimens in each sample. He has taken 20 preliminary samples, and on the basis of these
data he concludes that X; = 115.59 psi, X, = 1.06 (x 1072) inch, 57 = 1.23, 55 = 0.83, and
512 = 0.79. Therefore, the statistic he will use for process-control purposes is

2 10

T = (1.23)(0.83)~ (0.79) {0.83(,?, —115.59)2 +1.23(%, ‘1-06)2

~2(0.79)(%, —115.59)(%, -1.06)]

The data used in this analysis and the summary statistics are in Table 10-1, panels (a)
and (b).

Figure 10-7 presents the Hotelling 72 control chart for this example. We will consider
this to be phase I, establishing statistical control in the preliminary samples, and calculate
the upper control limit from equation 10-20. If @ = 0.001, then the UCL is

vcL = Pm=1(n-1)
mn—-m-—p+1
2(19)(9)

342
= — F
179 0.001,2,179

=(1.91)7.18
=13.72

a,p,man—m—p+1

This control limit is shown on the chart in Fig. 10-7. Notice that no points exceed this
limit, so we would conclude that the process is in control. Phase II control limits could be
calculated from equation 10-21. If @ = 0.001, the upper control limit is UCL = 15.16. If
we had used the approximate chi-square control limit, we would have obtained Z(2).001,2 =
13.816, which is reasonably close to the correct limit for phase I but somewhat too small
for phase II.



498  CHAPTER 10 MULTIVARIATE PROCESS MONITORING AND CONTROL

AT RS eV

|
10}

T2

1

0;.,.,5..,‘ H ! i R WY,
12345678910 12 14 16 18 20
Sample number

Figure 10-7 The Hotelling T* control chart for tensile
strength and diameter, Example 10-1.

Table 10-1 Data for Example 10-1

(©
Control
(a) (b) Chart |
Sample Means Variances and Covariances Statistics
Number k  Tensile Strength (¥;;) Diameter (Xy;) 5%, 53, Syak T? ISl
1 11525 1.04 1.25 0.87 0.80 216 045
2 115.91 1.06 126 085 0.81 2.14 04l %}
3 115.05 1.09 130 090 082 677 050
4 11621 1.05 102 085 0.81 829 02l |
5 115.90 1.07 116 073 0.80 1.89 021 |
6 115.55 1.06 1.01 0.80 0.76 003 023 *-i
7 114.98 1.05 1.25 0.78 0.75 754 041
8 115.25 1.10 140 083 0.80 301 052
9 116.15 1.09 119 087 0.83 592 035
10 115.92 1.05 117 086 0.95 241 - 010
1 115.75 0.99 145 0.79 0.78 113 054
12 114.90 1.06 124 082 0.81 9.96 036
13 116.01 1.05 126 055 012 386 047
14 11583 - 1.07 117 076 075 LIt 033
15 115.29 NI 123 089 0.82 2.56 - 042
16 115.63 1.04 1.24 0.91 0.83 0.08 - 0M
17 115.47 1.03 120 095 070 0.19 0
8 115.58 1.05 118 0.83 0.79 0.00
19 115.72 1.06 131 0.89 0.76 03

20 115.40 1.04 129 085 068 0620

Averages % =115.59 % =106 52=123 53=083 5,;,=0.79




10-3 THE HOTELLING 7° CONTROL CHART 499

The widespread interest in multivariate quality control has led to including the
Hotelling T control chart in some software packages. These programs should be used
carefully, as they sometimes use an incorrect formula for calculating the control limit.
Specifically, some packages use

veL =2 g

a,p.a—p
m—p P

This control limit is obviously incorrect. This is the correct critical region to use in multi-
variate statistical hypothesis testing on the mean vector i, where a sample of size m is
taken at random from a p-dimensional normal distribution, but it is not directly applicable
to the control chart for either phase I or phase II problems.

Interpretation of Out-of-Control Signals

One difficulty encountered with any multivariate control chart is practical interpretation
of an out-of-control signal. Specifically, which of the p variables (or which subser of them)
is responsible for the signal? This question is not always easy to answer. The standard
practice is to plot univariate X charts on the individual variables x|, X, . . ., X,. However,
this approach may not be successful, for reasons discussed previously. Alt (1985) suggests
using X charts with Bonferroni-type control limits [i.e., replace Z,, in the X chart control
limit calculation with Zyy,,)]. This approach reduces the number of false alarms associ-
ated with using many simultaneous univariate control charts. Hayter and Tsui (1994)
extend this idea by giving a procedure for exact simultaneous confidence intervals. Their
procedure can also be used in situations where the normality assumption is not valid.
Jackson (1980) recommends using control charts based on the p principal components
{which are linear combinations of the original variables). Principal components are dis-
cussed in Section 10-7. The disadvantage of this approach is that the principal components
do not always provide a clear interpretation of the situation with respect to the original
variables. However, they are often effective in diagnosing an out-of-control signal, partic-
ularly in cases where the principal components do have an interpretation in terms of the
original variables.

Another very useful approach to diagnosis of an out-of-control signal is to decompose
the T2 statistic into components that reflect the contribution of each individual variable. If
T? is the current value of the statistic, and T(,z) is the value of the statistic for all process
variables except the ith one, then Runger, Alt, and Montgomery (1996b) show that

4=T"-T) (10-22)

is an indicator of the relative contribution of the ith variable to the overall statistic. When
an out-of-control signal is generated, we recommend computing the values of d; (i = 1, 2,

., p) and focusing attention on the variables for which d; are relatively large. This pro-
cedure has an additional advantage in that the calculations can be performed using stan-
dard software packages.
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To illustrate this procedure, consider the following example from Runger. A}, and
Montgomery (1996a). There are p = 3 quality characteristics and the covariance matriy is
known. Assume that all three variables have been scaled as follows:

Y ~Hy

Y=
! (m- 1)0‘;7-‘

This scaling results in each process variable having mean zero and variance ope,
Therefore, the covariance matrix X is in correlation form; that is, the main diagonaj eje.
ments are all one and the off-diagonal elements are the pairwise correlation between the
process variables (the x’s). In our example,

1 09 09
z=j09 1 09
09 09 1

The in-control value of the process mean is & = [0, 0, 0]. Consider the following display:

Control Chart
Observation Vector Statistic d;=T*-T%
y T3 =2 4 d; ds
2,0,0) 27.14 27.14 6.09 6.09
(1,1,-1) 26.79 6.79 6.79 25.73
(1,-1,0) 20.00 14.74 14.74 0
05,05, 1) 15.00 3.69 3.68 14.74

Since X is known, we can calculate the upper control limit for the chart from a chi-square
distribution. We will choose 7(%).005,3 = 12.84 as the upper control limit. Clearly all four
observation vectors in the above display would generate an out-of-control signal. Runger,
Alt, and Montgomery (1996b) suggest that an approximate cutoff for the magnitude of an
individual 4; is xil. Selecting & = 0.01, we would find x&m,, = 6.63, so any d; exceeding
this value would be considered a large contributor. The decomposition statistics d; computed
above give clear guidance regarding which variables in the observation vector have shifted.

Other diagnostics have been suggested in the literature. For example, Murphy (1987)
and Chua and Montgomery (1992) have developed procedures based on discriminant
analysis, a statistical procedure for classifying observations into groups. Tracy, Mason,
and Young (1996) also use decompositions of T2 for diagnostic purposes, but their proce-
dure requires more extensive computations and uses more elaborate decompositions than
equation 10-22.

10-3.2 Individual Observations

In some industrial settings the subgroup size is naturally n = 1. This situation occurs fre-
quently in the chemical and process industries. Since these industries frequently have mul-
tiple quality characteristics that must be monitored, multivariate control charts with n = !
would be of interest there.



522

L1

The Sadent
Renouree
Munual prosents
compreheisive
annolated
spdutions o the
okE-nuimbrered
ExeTrihy
incudest in the
Answers Lo
Sefevied
Exuereises section
Te the ok of
this hook.
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IMPORTANT TERMS AND CONCEPTS

Average run length

Cascade process

Chi-square control chart

Controf eilipse

Covariance matrix

Hoteliing 72 control chart

Matrix of scatter plots

Mean vector

Monitoring muitivariate variabitity
Muftivariate EWMA control chart
Muitivariate snormal distribution
Muitivariate process conirol
Partial least squares

Phase | control Hmits

Phase I controf limits

Principal component scores

Principal components analysis (PCA)
Profile monitoring

Profiles

Regression adjustment

Residual controf chart

Sample covariance matsix

Sample mean vector

Subgroup data versus individual observations
Trajectory piots

EXERCISES
18-}, 'The datz shown here come from a pro- 182, A product has three quality characteris.

duction process with (wo observable
quality characteristics, x; and x5 The
data are sample means of each guality
characteristic, based on samples of size
n = 25, Assume that mean vaiues of the
guality characteristics and the covari-
ance malrix were computed from 30

preliminary samples:
135 S 200 130‘!
T[300 T {130 1204

Constiuet a T2 control chart using these
data. Use the phase II limits.

i

Sample
Nam ber ¥ ¥ 22
i 58 32
2 60 33
3 54 27
4 54 31
3 63 38
& 53 30
7 42 26
8 S35 3i
9 46 25
¢ 50 29
i 49 27
12 3 30
i3 58 33
14 75 48

15 55 27

tics. The nominal values of these quality
characteristics and their sample covari-
ance matrix have been determined from
the analysis of 39 preliminary samples
of size n = 10 as follows:

30 146 102 105
¥=i35] 8=11.02 135 498
2.8 1.05 098 120

The sarple means for each quality char-
acteristic for 15 additional samples of
size n = 1} are shown next. Is the process
in statistical control?

Sample

Number X Xy Xy
; 3. 3.7 3.0
2 33 39 3
3 2.6 3.0 24
4 28 3.0 2.5
5 30 3.3 28
6 49 4.6 33
7 33 47 30
8 a0 3.3 r
G 2.4 3.0 22
10 20 2.6 {8
i 3.2 3.9 30
i2 3.7 4.0 30
13 4.1 4.7 32
14 3.8 4.0 2.9
s 32 36 2
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observations

ity characteris-
of these quality
sample covani-
termined from
tinary samples

162 16s
1.35 058
698 1.20
h quality char-
al samples of
. Is the process
i 390

R 3.1

0 24

0 2.5

3 28

6 3.3

2 30

3 2.7

0 2.2

6 18

9 3.0

0 30

7 3.2

0 2.9

é 28

19-3.

10-4.

16-5.

19-6.

107,

Reconsider the situation in Exercise
10-1. Suppose that the sample mean
vector and sample covariance matnix
mrovided were the actual population
parameters. What contrel limit would be
appropiiate for phase I for the control
chast? Apply this Himit to the data and
discuss any differences in resuoits that
you find In comparison to the original
choice of controf lmit.

Reconsider the situation in Exercise 10-

2. Suppose that the sample mean vector

and sample covariance matrix provided

were the actual popuiation pararmeters.

What contral lirnit would be appropsiate

for phase H of the control chart? Apply

this Himit to the data and discuss any dif-
ferences in resuits that you find in com-
parison to the original choice of control

Hmit.

Consider a T2 control chart for moni-

toring p =6 guality characteristics.

Suppose that the subgroup size is n =3

and there are 30 preliminary semples

avatiabie {0 estimate the sample covarni-
ance matrix.

{a) Find the phasc II control Hmits
assumiang that o = 0.005.

{b) Compare the control limits from
part fa) to the chi-square control
{trait, What is the magnitude of the
difference in the two control limits?

{c) How many preliminary samples
would have 10 be taken to ensure
that the exact phase H control limit
is within 1% of the chi-square con-
tro} limit?

Rework Exercise 10-5, assuming that

the subgroup size isn = 5.

Consider a 7% control chart for monitor-

ing pw= 10 quality characteristics.

Suppose that the subgroup size s n = 3

and there are 25 preliminary samples

available {o estimate the sampie covani-
ance matrix,

(a} Find the phase I control limits
assusning that o= 0.005,

(b} Compare the contwrol limits from
part {a) to the chi-square coatrol
Iimit. What is the magnitude of the
difference in the two controf firmis?

{c) How many preliminary samples
would have 1o be taken to ensure

10-8.

16-9.

19-19.

-1,

EXERCISES 523

that the chi-square control Hmit is
within 1% of the exact phase H con-
trof dipnat?

Rework Exercise 10-7, assuming thas
the subgroup size isn =3,
Cousider a 72 control chart for monitor-
ing p=10 gquality characteristics,
Suppose that the subgroup size s n =3
and there are 25 preliminary sampies
available 1o estimate the sample covari-
ance matrix, Calouiate both the phase |
and the phase If control limits {use &
=01},

Suppose that we have p =4 guality char-

acteristics, and in correlation form all

four variables have variance unity and
ali pairwise correlation coefficients are

6.7. The in-control value of the process

mean vector i g = {0, 6, 0, 0},

{a) Write out the covariance mainx £,

{b) What is the chi-square controd [imit
for the chart, assuming that @ =
0017

(c) Suppose that a sample of observa-
tions results in the standardized
observation vector ¥ =[3.5, 3.5,
3.3, 3.3} Caiculate the vajue of the
72 statistic, Is an out-of-contro} sig-
nal generated?

(dy Calculate the diagnostic gquantities
d;, i=1,2,3, 4 from equation 10-22,
Does this information assist in iden-
tiying which process variabies have
shifted?

(e} Suppose that a sammple of observa-
tions results in the standardized
observation vector ¥ = [2.5, 2, -1,
0. Calculate the value of the T2 sta-
gistic, Is an out-of-control signal
generated?

(fy For the case in (¢), calculate the
diagnostic guantities d,, i= 1,2, 3.4
from equation 10-22. Does this
information assist in identifying
which process varishles have
shifted?

Suppose that we have p = 3 quality char-

acteristics, and in comrelation form ail

three variables have variance uaity and
all pairwise comrelation coefficients are
0.8, The in-contro} value of the process
mean vector is @ = {0, 0, 01,

{a} Write out the covariance matrix 2.
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189-12,

16-13,

19-14.

16-15.

(b} What is the chi-square contro} lmit
for the chars. assuming that o =
0.057

{¢} Suppose that o sample of observa-
tions results in the standardized
observation vecior ¥ = {1, 2. 0L
Calcnlaie the value of the 77 statis-
tc. Is an out-of-contro} signal gen-
erated?

{dy Calcuiate the diagnostic quantities

d. iw= 1, 2.3 from equation 122,

Does this information assist in iden-

nfying which process variables have

shified?

Suppose that a sample of observa-

tions resslts in the standardized

observation vector ¥ = [2, 2, 1l

Caleulate the value of the 77 statis-

tic, Is an out-of-control signal gen-

erated?

{fy For the case in (e}, caiculate the
diagnostic quantities 4, 7= [, 2, 3
from equation [0-22. Does this
information assist in identifyving
which process  variables have
shifted?

Consider the first two process variables

in Table 10-5. Calculate an estimate of

the sampie covariance matrix using both
estmators 8, and 8, discussed in

Section 10-3.2.

Congider the first three process variables

in Table 10-5. Calculate an estimate of

the sample covariance matrix using both
estimators 8, and §; discussed in

Section 10-3.2.

Consider all 30 observations on the first

two process variables i Table 10-6.

Calculate an estimate of the sarple

covagiance matrix using both estimators

8, and 8, discussed in Section 10-3.2.

Are the estimates very different?

Discuss your findings.

Suppose that there are p = 4 guality

characteristics, and in correlation form

atl four variables have variance unity
and all pairwise correlation coefficients
are (L.75. The in-control value of the

process mean vector i 4 = [0, 0, 0. 0],

and we wani to design an MEWMA

control chart to provide good protection
against a shift to a new mean vector of

(&)

19-16.

10-17.

14-18.

10-19.

y' =11, 1. 1. 1} If an in-control ARLy of
206 is satisfactory, what value of } and
what upper control limit shoulg e
used? Approxirnately, what is the ARL
for detecting the shift in the 1, :
vector?
Suppose that there are p = 4 Quatity
characteristics, and in correlation fom,
ol four variables have variance ity
and that afl pairwise correlution coeff.
cients are .9, The incontrol value of
the process mean vector is i = [0, 0, g,
0}, and we want to design an MEWM4
cortrol chart to provide good protectiop
against a shift to a new mean vector of
¥ =1, §, L, IL Suppose that an in-con-
trel ARL,; of 500 is desired. What valye
of 4 and what upper control limit wonid
you recommend? Approximately, what
is the ARL, for detecting the shift in the
mean vector?

Suppose that there are p = 7 guaiity

characteristics, and in correlation form

both varisbles have variance unity and
the correlation coefficient is 0.8, The in-
control value of the process mean vecior
is f£ = 1§, 0], and we want to design an

MEWMA controf chart to provide good

protection against a shift to 4 new mem

vector of ¥ = {1, 1. If an in-control

ARLy of 200 is satisfactory, what value

of A and what upper contro! Iimit should

be used? Approximately, what is the

ARL., for detecting the shift in the mean

vector?

Consider the cascade process data i

Table 10-3,

(1) Set up an individuals control chart
on y;.

{b) Fit a regression model 10 ¥;, and sel
up an individuals control chast o
the residuals. Comment on the dif
ferences between this chart and the
one in part (a).

fcy Calculate the sample autocorreld
tion functions on y, and on the
residuals from the regression model
in part (b, Discuss your {indings.

Consider the cascade process data it

Table 10-5. In fiting regression models

to both v, and v, you wili find g]a[‘nof

aif of the process variables are required

4
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16-20.

10-21.

to obtain a satisfactory regression model
for the output variables, Remove the
nonsignificant variables from these
equadions and obtain subse!l regression
models for both v, and v,. Then con-
struet individuals control charts for both
sets of residuals. Compare them o the
residual control charts in the text (Fig.
10-11} and from Exercise 10-18, Are
there any substantial  differences
between the charts from the two differ
ent approaches {o fiting the regression
models?

Continuation of Exercise 10-19, Using
the residuals from the regression modeis
in Exercise 10-19, set up EWMA coa-
trol charts. Compare these EWMA con-
trol charts to the Shewhart chars for
individuals  constructed  previously.
What are the potential advantages of the
EWMA control chast in this situation?
Consider the p = 4 process variables in
Tabie 10-6. After applying the PCA pro-
cedure to the first 20 observations data
¢see Table 10-7), suppose that the first
three principai components are retained.

EXERCISES 5258

(a} Obtain the principal component
scores. (Hint: Remember that you
must work in standardized vari-
ables.}

(b} Construct an appropriate set of pair-
wise plots of the principat cornpo-
nent sCores.

{c) Calcalate the principal component
scores for the last 1} observations.
Plot the scores on the charts from
part {b) and interpret the resulis,

10-22. Consider the p = 9 progess variables in

Table 10-5.

{a) Perform a PCA os the first 30 obser-
vations. Be sure to work with the
standardized variables.

(b} How much variability is explained if
only the first r = 3 principal compo-
nents are retained?

fey Construct an appropriate set of pair-
wise plots of the first r= 3 principal
component scores,

(d} Now consider the last 10 observa-
tions. Obtain the principal compo-
nent scores and plot them on the
chart in part {¢). Does the process
seem to be in control?
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IMPORTANT TERMS AND CONCEPTS

Average run length

Cascade process

Chi-square control chart

Controf eilipse

Covariance matrix

Hoteliing 72 control chart

Matrix of scatter plots

Mean vector

Monitoring muitivariate variabitity
Muftivariate EWMA control chart
Muitivariate snormal distribution
Muitivariate process conirol
Partial least squares

Phase | control Hmits

Phase I controf limits

Principal component scores

Principal components analysis (PCA)
Profile monitoring

Profiles

Regression adjustment

Residual controf chart

Sample covariance matsix

Sample mean vector

Subgroup data versus individual observations
Trajectory piots

EXERCISES
18-}, 'The datz shown here come from a pro- 182, A product has three quality characteris.

duction process with (wo observable
quality characteristics, x; and x5 The
data are sample means of each guality
characteristic, based on samples of size
n = 25, Assume that mean vaiues of the
guality characteristics and the covari-
ance malrix were computed from 30

preliminary samples:
135 S 200 130‘!
T[300 T {130 1204

Constiuet a T2 control chart using these
data. Use the phase II limits.

i

Sample
Nam ber ¥ ¥ 22
i 58 32
2 60 33
3 54 27
4 54 31
3 63 38
& 53 30
7 42 26
8 S35 3i
9 46 25
¢ 50 29
i 49 27
12 3 30
i3 58 33
14 75 48

15 55 27

tics. The nominal values of these quality
characteristics and their sample covari-
ance matrix have been determined from
the analysis of 39 preliminary samples
of size n = 10 as follows:

30 146 102 105
¥=i35] 8=11.02 135 498
2.8 1.05 098 120

The sarple means for each quality char-
acteristic for 15 additional samples of
size n = 1} are shown next. Is the process
in statistical control?

Sample

Number X Xy Xy
; 3. 3.7 3.0
2 33 39 3
3 2.6 3.0 24
4 28 3.0 2.5
5 30 3.3 28
6 49 4.6 33
7 33 47 30
8 a0 3.3 r
G 2.4 3.0 22
10 20 2.6 {8
i 3.2 3.9 30
i2 3.7 4.0 30
13 4.1 4.7 32
14 3.8 4.0 2.9
s 32 36 2
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0 24

0 2.5

3 28
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9 3.0

0 30

7 3.2

0 2.9
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19-3.

10-4.

16-5.

19-6.

107,

Reconsider the situation in Exercise
10-1. Suppose that the sample mean
vector and sample covariance matnix
mrovided were the actual population
parameters. What contrel limit would be
appropiiate for phase I for the control
chast? Apply this Himit to the data and
discuss any differences in resuoits that
you find In comparison to the original
choice of controf lmit.

Reconsider the situation in Exercise 10-

2. Suppose that the sample mean vector

and sample covariance matrix provided

were the actual popuiation pararmeters.

What contral lirnit would be appropsiate

for phase H of the control chart? Apply

this Himit to the data and discuss any dif-
ferences in resuits that you find in com-
parison to the original choice of control

Hmit.

Consider a T2 control chart for moni-

toring p =6 guality characteristics.

Suppose that the subgroup size is n =3

and there are 30 preliminary semples

avatiabie {0 estimate the sample covarni-
ance matrix.

{a) Find the phasc II control Hmits
assumiang that o = 0.005.

{b) Compare the control limits from
part fa) to the chi-square control
{trait, What is the magnitude of the
difference in the two control limits?

{c) How many preliminary samples
would have 10 be taken to ensure
that the exact phase H control limit
is within 1% of the chi-square con-
tro} limit?

Rework Exercise 10-5, assuming that

the subgroup size isn = 5.

Consider a 7% control chart for monitor-

ing pw= 10 quality characteristics.

Suppose that the subgroup size s n = 3

and there are 25 preliminary samples

available {o estimate the sampie covani-
ance matrix,

(a} Find the phase I control limits
assusning that o= 0.005,

(b} Compare the contwrol limits from
part {a) to the chi-square coatrol
Iimit. What is the magnitude of the
difference in the two controf firmis?

{c) How many preliminary samples
would have 1o be taken to ensure

10-8.

16-9.

19-19.

-1,
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that the chi-square control Hmit is
within 1% of the exact phase H con-
trof dipnat?

Rework Exercise 10-7, assuming thas
the subgroup size isn =3,
Cousider a 72 control chart for monitor-
ing p=10 gquality characteristics,
Suppose that the subgroup size s n =3
and there are 25 preliminary sampies
available 1o estimate the sample covari-
ance matrix, Calouiate both the phase |
and the phase If control limits {use &
=01},

Suppose that we have p =4 guality char-

acteristics, and in correlation form all

four variables have variance unity and
ali pairwise correlation coefficients are

6.7. The in-control value of the process

mean vector i g = {0, 6, 0, 0},

{a) Write out the covariance mainx £,

{b) What is the chi-square controd [imit
for the chart, assuming that @ =
0017

(c) Suppose that a sample of observa-
tions results in the standardized
observation vector ¥ =[3.5, 3.5,
3.3, 3.3} Caiculate the vajue of the
72 statistic, Is an out-of-contro} sig-
nal generated?

(dy Calculate the diagnostic gquantities
d;, i=1,2,3, 4 from equation 10-22,
Does this information assist in iden-
tiying which process variabies have
shifted?

(e} Suppose that a sammple of observa-
tions results in the standardized
observation vector ¥ = [2.5, 2, -1,
0. Calculate the value of the T2 sta-
gistic, Is an out-of-control signal
generated?

(fy For the case in (¢), calculate the
diagnostic guantities d,, i= 1,2, 3.4
from equation 10-22. Does this
information assist in identifying
which process varishles have
shifted?

Suppose that we have p = 3 quality char-

acteristics, and in comrelation form ail

three variables have variance uaity and
all pairwise comrelation coefficients are
0.8, The in-contro} value of the process
mean vector is @ = {0, 0, 01,

{a} Write out the covariance matrix 2.
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16-13,

19-14.

16-15.

(b} What is the chi-square contro} lmit
for the chars. assuming that o =
0.057

{¢} Suppose that o sample of observa-
tions results in the standardized
observation vecior ¥ = {1, 2. 0L
Calcnlaie the value of the 77 statis-
tc. Is an out-of-contro} signal gen-
erated?

{dy Calcuiate the diagnostic quantities

d. iw= 1, 2.3 from equation 122,

Does this information assist in iden-

nfying which process variables have

shified?

Suppose that a sample of observa-

tions resslts in the standardized

observation vector ¥ = [2, 2, 1l

Caleulate the value of the 77 statis-

tic, Is an out-of-control signal gen-

erated?

{fy For the case in (e}, caiculate the
diagnostic quantities 4, 7= [, 2, 3
from equation [0-22. Does this
information assist in identifyving
which process  variables have
shifted?

Consider the first two process variables

in Table 10-5. Calculate an estimate of

the sampie covariance matrix using both
estmators 8, and 8, discussed in

Section 10-3.2.

Congider the first three process variables

in Table 10-5. Calculate an estimate of

the sample covariance matrix using both
estimators 8, and §; discussed in

Section 10-3.2.

Consider all 30 observations on the first

two process variables i Table 10-6.

Calculate an estimate of the sarple

covagiance matrix using both estimators

8, and 8, discussed in Section 10-3.2.

Are the estimates very different?

Discuss your findings.

Suppose that there are p = 4 guality

characteristics, and in correlation form

atl four variables have variance unity
and all pairwise correlation coefficients
are (L.75. The in-control value of the

process mean vector i 4 = [0, 0, 0. 0],

and we wani to design an MEWMA

control chart to provide good protection
against a shift to a new mean vector of

(&)

19-16.

10-17.

14-18.

10-19.

y' =11, 1. 1. 1} If an in-control ARLy of
206 is satisfactory, what value of } and
what upper control limit shoulg e
used? Approxirnately, what is the ARL
for detecting the shift in the 1, :
vector?
Suppose that there are p = 4 Quatity
characteristics, and in correlation fom,
ol four variables have variance ity
and that afl pairwise correlution coeff.
cients are .9, The incontrol value of
the process mean vector is i = [0, 0, g,
0}, and we want to design an MEWM4
cortrol chart to provide good protectiop
against a shift to a new mean vector of
¥ =1, §, L, IL Suppose that an in-con-
trel ARL,; of 500 is desired. What valye
of 4 and what upper control limit wonid
you recommend? Approximately, what
is the ARL, for detecting the shift in the
mean vector?

Suppose that there are p = 7 guaiity

characteristics, and in correlation form

both varisbles have variance unity and
the correlation coefficient is 0.8, The in-
control value of the process mean vecior
is f£ = 1§, 0], and we want to design an

MEWMA controf chart to provide good

protection against a shift to 4 new mem

vector of ¥ = {1, 1. If an in-control

ARLy of 200 is satisfactory, what value

of A and what upper contro! Iimit should

be used? Approximately, what is the

ARL., for detecting the shift in the mean

vector?

Consider the cascade process data i

Table 10-3,

(1) Set up an individuals control chart
on y;.

{b) Fit a regression model 10 ¥;, and sel
up an individuals control chast o
the residuals. Comment on the dif
ferences between this chart and the
one in part (a).

fcy Calculate the sample autocorreld
tion functions on y, and on the
residuals from the regression model
in part (b, Discuss your {indings.

Consider the cascade process data it

Table 10-5. In fiting regression models

to both v, and v, you wili find g]a[‘nof

aif of the process variables are required

4
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10-21.

to obtain a satisfactory regression model
for the output variables, Remove the
nonsignificant variables from these
equadions and obtain subse!l regression
models for both v, and v,. Then con-
struet individuals control charts for both
sets of residuals. Compare them o the
residual control charts in the text (Fig.
10-11} and from Exercise 10-18, Are
there any substantial  differences
between the charts from the two differ
ent approaches {o fiting the regression
models?

Continuation of Exercise 10-19, Using
the residuals from the regression modeis
in Exercise 10-19, set up EWMA coa-
trol charts. Compare these EWMA con-
trol charts to the Shewhart chars for
individuals  constructed  previously.
What are the potential advantages of the
EWMA control chast in this situation?
Consider the p = 4 process variables in
Tabie 10-6. After applying the PCA pro-
cedure to the first 20 observations data
¢see Table 10-7), suppose that the first
three principai components are retained.

EXERCISES 5258

(a} Obtain the principal component
scores. (Hint: Remember that you
must work in standardized vari-
ables.}

(b} Construct an appropriate set of pair-
wise plots of the principat cornpo-
nent sCores.

{c) Calcalate the principal component
scores for the last 1} observations.
Plot the scores on the charts from
part {b) and interpret the resulis,

10-22. Consider the p = 9 progess variables in

Table 10-5.

{a) Perform a PCA os the first 30 obser-
vations. Be sure to work with the
standardized variables.

(b} How much variability is explained if
only the first r = 3 principal compo-
nents are retained?

fey Construct an appropriate set of pair-
wise plots of the first r= 3 principal
component scores,

(d} Now consider the last 10 observa-
tions. Obtain the principal compo-
nent scores and plot them on the
chart in part {¢). Does the process
seem to be in control?








