56:295 – 001 Multivariate Statistics and Advanced Quality Control Fall 05

HW5 Due: October 26 (Wednesday), 6:15pm

Solution

Solve the following problems from the textbook (J&W)

8.6(a)(b)(c) (you can use a software such as Matlab to calculate the eigenvalues and eigenvectors; but do NOT use the PCA function of software)

- (a) $\hat{y}_1 = 0.999673x_1 + 0.025574x_2$. Sample variance of $\hat{y}_1 = \hat{\lambda}_1 = 1.0012 \times 10^9$. $\hat{y}_2 = -0.025574x_1 + 0.999673x_2$. Sample variance of $\hat{y}_2 = \hat{\lambda}_2 = 775, 734.3$.
- (b) Proportion of total sample variance explained by \hat{y}_1 is $\hat{\lambda}_1/(\hat{\lambda}_1 + \hat{\lambda}_2) = 0.99923$.

8.7(a)(b)(d)

(a) $\hat{y}_1 = 0.707107z_1 + 0.707107z_2$. Sample variance of $\hat{y}_1 = \hat{\lambda}_1 = 1.67615$. $\hat{y}_2 = -0.707107z_1 + 0.707107z_2$. Sample variance of $\hat{y}_2 = \hat{\lambda}_2 = 0.32385$.

Correlation Matrix

	SALES	PROFITS
SALES	1.0000	0.6762
PROFITS	0.6762	1.0000

(b) Proportion of total sample variance explained by \hat{y}_1 is $\hat{\lambda}_1/(\hat{\lambda}_1 + \hat{\lambda}_2) = 0.83808$.

(d) The nature of the principal component is heavily influenced by the relative sizes of the variances of the variables. The correlation coefficients between the components and the variables give some indication of the importance of the variables taking account differences in variances. Standardizing the variables makes the variable units comparable and puts the variables on similar scales.

8.18(a)(b)(c) (use Minitab or another statistical package for PCA; for part (b), do not need to show the correlations of the standardized variables with the components; the data file for Table 1.9 is posted on the homework page).

(a)	Cor	relation	Matrix						
		X1	X2	Х3	X4	X5	X6	X7	
	X1	1.0000	0.9528	0.8347	0.7277	0.7284	0.7417	0.6863	
	X2	0.9528	1.0000	0.8570	0.7241	0.6984	0.7099	0.6856	
	XЗ	0.8347	0.8570	1.0000	0.8984	0.7878	0.7776	0.7054	
	Χ4	0.7277	0.7241	0.8984	1.0000	0.9016	0.8636	0.7793	
	X5	0.7284	0.6984	0.7878	0.9016	1.0000	0.9692	0.8779	
	X6	0.7417	0.7099	0.7776	0.8636	0.9692	1.0000	0.8998	
	X7	0.6863	0.6856	0.7054	0.7793	0.8779	0.8998	1.0000	
1	Eig	envalues	of the	Correlat	tion Matr	ix			
		I	Eigenval	ue	Differen	ce	Proporti	on	Cumulat:
	PRIN1		5.805	69	5.152	04	0.8293	84	0.82
PRIN2		0.653	65	0.353	76	0.0933	78	0.92	
	PRIN3		0.299	88	0.174	40	0.0428	40	0.96
	PRIN4		0.125	48	0.071	66	0.0179	25	0.983
	PRINS		0.053	82	0.014	77	0.0076	88	0.99:
	PRIN6		0.039	05	0.016	61	0.0055	78	0.996
	PRI	N7	0.022	44			0.0032	06	1.000
	-								

Eigenvectors

	PRIN1	PRIN2	PRIN3	PRIN4	PRIN5	PRIN6	PRIN7
X1	0.368356	0.490060	0.286012	319386	0.231169	0.619825	0.052177
Χ2	0.365364	0.536580	0.229819	0.083302	0.041455	710765	109225
XЗ	0.381610	0.246538	515367	0.347377	572178	0.190946	0.208497
X4	0.384559	155402	584526	0.042076	0.620324	019089	315210
15	0.389104	360409	012912	429539	0.030261	231248	0.692562
16	0.388866	347539	0.152728	363120	463355	0.009277	598359
17	0.367004	369208	0.484370	0.672497	0.130536	0.142281	0.069598

(b) $\hat{y}_1 = 0.3684z_1 + 0.3654z_2 + 0.3816z_3 + 0.3846z_4 + 0.3891z_5 + 0.3889z_6 + 0.3670z_7$. $\hat{y}_2 = 0.4901z_1 + 0.5366z_2 + 0.2465z_3 - 0.1554z_4 - 0.3604z_5 - 0.3475z_6 + 0.3692z_7$.

The cumulative percentage of total variance explained by the first two components is 92.3%.

(c) The first principal component has strong positive correlations with all of the standardized variables. This component may be identified as a measure of athletic excellence (excellence in all running events). The second component has positive correlations with variables z_1 — z_3 (100m, 200m, 400m) and negative correlations with variables z_4 — z_7 (800m, 1500m, 300m, marathon). This component contrasts excellence at running short distances (primarily speed) with excellence at running the long distances (primarily endurance).