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ABSTRACT 
 
This paper represents a first step towards the 
development of two-phase CFD methods for small and 
large scale ship hydrodynamic applications. Two-phase 
level set approaches are being implemented in 
CFDShip-Iowa to extend the modeling capabilities of 
the current version 4 along with complementary 
experiments for validation. The experiments are 
conducted in an open channel flume using bottom 
mounted bumps to generate plunging breaking waves. 
Experimental work includes determining the optimum 
flow conditions for generating periodic and impulsive 
plunging breaking waves, theoretical analysis for free 
surface instabilities that are observed at low speeds 
prior to the breaking process, and experimental 
measurements for validation of the theory.  Two two-
phase level set methods, the Heaviside function method 
(HFM) and the ghost fluid method (GFM) are extended 
to curvilinear body-fitted grids to simulate air/water 
free surface turbulent flows and the methods are 
applied to plunging wave breaking, sub-critical free 
surface flows generated by a submerged bump, and free 
surface turbulent flow both in air and water around a 
ship model DTMB 5512. The results show good 
agreement with experimental data. Another method 
using two-phase level set embedded boundary 
Cartesian grid, has also been implemented and results 
are presented for some preliminary computations. The 
simulation of impulsive plunging breaking waves is in 
very good qualitative agreement with the experimental 
data. A computation of non-breaking waves generated 
by a submerged hydrofoil has also been carried out and 
the results compared very well with the experimental 
data. 
 
INTRODUCTION 
 
Two-phase CFD methods are needed for both small 
and large scale ship hydrodynamics applications.  
Detailed resolution of both air and water phases is 
important for prediction at the smaller scales of steady 

and unsteady breaking waves (including splashing, free 
surface turbulence, and bubble entrainment) and wind-
wave interactions. At the larger scales, the effects of 
superstructure forces and air wakes and their 
interactions with wave and water flow as well as air 
pressurization in compartments are also of importance.  
Current surface tracking and single phase level set 
approaches are not able to handle such problems, 
which require simultaneous solutions of air and water 
flows. Two phase level set approaches in principle can. 
However, relatively little attention has been given to 
the detailed air/water flow, except for investigations of 
two-dimensional unsteady wave breaking or three-
dimensional super structure air wakes without 
consideration to the free surface and waves.  
Additionally, detailed experiments for physics, model 
development, and CFD validation for unsteady 
breaking waves and air/water ship flows are lacking. 

This paper represents a first step towards the 
development of two-phase CFD methods for such 
problems and complementary PIV EFD with specific 
focus on the investigation of plunging breaking waves, 
alternative CFD approaches, and extensions for 
air/water ship flow. Plunging breaking wave 
experiments are conducted in an open channel flume 
over curved bumps for both periodic and impulsive 
breakers, including in the former case the identification 
of three-dimensional span wise instabilities and their 
theoretical prediction derived using centrifugal 
instability analysis and validation using present EFD 
data. Two two-phase level set methods are 
implemented in CFDShip-Iowa version 5.0 [i.e., 
curvilinear solvers and classic heaviside function 
method (HFM) and ghost fluid method (GFM)] and 
tested for submerged bumps using both available EFD 
data for non-breaking waves and using the present EFD 
data for impulsive plunging breaking waves and for 
air/water ship flow using previous IIHR EFD data for 
5512.  Two-phase HFM is implemented in a Cartesian 
solver, immersed boundary CFD code and tested for 
submerged bump using the present EFD data for 
impulsive plunging breaking waves and for submerged 



hydrofoils using available EFD data. Coupling of 
Cartesian solver for outer flow and curvilinear solver 
for inner flow near solid boundaries is the envisioned 
approach for CFDShip-Iowa version 6.0. In the 
following, appropriate background discussions with 
references are provided for each investigation followed 
by descriptions of EFD or CFD methods and results.  
Lastly, concluding remarks are made, including 
discussion of pros and cons of alternative CFD 
approaches and future work for both CFD and EFD.  
 
PLUNGING BREAKER EXPERIMENTS 
 
Background  
Water waves have always been an interesting topic of 
research for many scientists for centuries. One of the 
most important and complex features of water waves is 
the wave breaking process itself that can occur in both 
deep water and shallow water regions of the oceans and 
can affect ships, trawlers, coastal structures etc. Ship 
bow wave breaking is the major concern of this 
research.  Although there is a dearth of available 
experimental data for bow wave breaking, the structure 
of the wave has received considerable attention over 
the years as summarized in a comprehensive review by 
Miyata & Inui (1984). They had demonstrated that the 
near surface flow becomes turbulent downstream of the 
wave crest. Due to limitations in their technique they 
were unable to measure velocity and turbulent fields in 
the immediate vicinity of the wall and free surface. 
Dong et. al. (1997) had performed PIV measurements 
on a ship model and found that a shear layer is formed 
at the toe of the breaking wave that extends into the 
fluid. Pogozelski et. al. (1997) obtained PIV 
measurements of the flow around a towed blunt body 
and had observed weak breaking at the bow wave but 
still saw generation of negative vorticity close to the 
forward face unlike a two dimensional breaking wave 
in which an extended shear layer is formed as reported 
by Lin & Rockwell (1995). 

Even though several researchers have made 
laboratory as well as field measurements to understand 
the process of wave breaking and its effects, it is still a 
very complex phenomenon, the physics of which needs 
to be fully understood, especially to improve the design 
of ships and offshore structures that are exposed to 
extreme conditions. Of all kinds of breaking, plunging 
is the most dramatic wave breaking phenomenon and 
the first part of this manuscript focuses on 
understanding the evolution, instabilities that lead to 
wave breaking and finally the breaking process of a 
plunging wave breaker through laboratory experiments.  
  
Test plan & flow conditions 
The present experiments are motivated to study 
breaking waves and obtain validation data for two 

phase CFD results. The first step was to generate 
plunging breakers with typical characteristics of 
overturning of crest, splashing and air entrapment, 
devoid of any surface tension effects. Peregrine (1983) 
introduced the criteria that waves steeper than 10 cm 
are not affected by surface tension which inhibits both 
plunging and air entrapment. Experiments were 
conducted in two open channel flumes with curved 
bumps fixed to the flume bottom surface, that were 
used to generate plunging wave breaking. Two 
different bump geometries (semicircular and fourth 
order curvature profile) were used for different bump 
heights. The water depths and the flow speeds for each 
bump were varied to generate the best case of plunging 
breaking.  The aim was to create plunging breakers 
larger than 10 cm wave height. The test plan is given in 
Table 1.  
 

Table 1: Test conditions for breaking waves 
Flume 1 – Semicircular bumps 

 h (cm) 
H = 10.80 cm 2.54 7.62 10.16 
H = 16.18 cm 2.54 3.81 5.08 
H = 20.30 cm 2.54 3.81 5.08 
H = 27.94 cm 2.54 3.81 5.08 

Flume 2 – Semicircular bumps 
 h (cm) 

H = 25.40 cm 2.54 3.81 5.08 
H = 27.94 cm 2.54 3.81 5.08 
H = 31.80 cm 2.54 3.81 5.08 
Flume 2 – Bumps with fourth order curvature profile 

 h (cm) 
H = 9.14 cm 1.27 2.54 3.81 5.08 11.43 
H = 11.43 cm 1.27 2.54 3.81 5.08 11.43 
H = 13.97 cm 1.27 2.54 3.81 5.08 11.43 
H = 27.94 cm 1.27 2.54 3.81 5.08 - 

Note: H is the bumpheight; h is the depth of water above the bump. 
Flume 1 is 9m long, 0.6m wide and 0.55m deep and Flume 2 is 18m 
long, 0.9m wide and 0.55m deep 
 

During the course of initial experiments, two 
different kinds of plunging breakers were identified. It 
was found that if the water depths above the bump (h) 
was kept below 6 cm and the upstream speed was in the 
range of 5-25cm/s, the wave breaking occurred 
repeatedly downstream of the bump and was highly 
three dimensional with significant span-wise variation. 
With higher values of h (h ~ 11cm) and increased 
upstream flow speed of 0.7m/s, two dimensional 
plunging breakers could be created. The former kind of 
wave breaking was dominated by the span-wise 
instability on the free surface. Both theoretical analysis 
and experimental measurements were performed to find 
a critical number that defines the onset of this 
instability.  Flume 2 was chosen finally for both 
instability and wave breaking measurements, since it 
has larger aspect ratio which reduces the effect of side 
walls. 
 

 
 

   



Instability analysis & validation 
Three dimensional span-wise instabilities have been 
observed at the free surface for spilling and plunging 
breaking waves in both deep and shallow water. These 
instabilities (figure1) resemble longitudinal braids 
spanning across the width of the wave. Even though 
detailed studies of these instabilities have not been done 
yet, there have been anecdotal reports of its 
observations in laboratory experiments related to wave 
breaking also. Perlin et. al. (1996) had performed 
experimental studies on plunging breakers and had 
observed instabilities that resembled capillary waves in 
the transverse direction along the forward portion of the 
plunging jet, but they did not include any detailed study 
of the instabilities. Steinbach et. al. (2002) had studied 
the cross-stream crest profiles of spilling breakers and 
had observed ripples that were generated upstream of 
the crest that were presumably due to the rapid 
development of stream-wise vorticity.             

The present experiments are motivated to 
study breaking waves and obtain validation data for two 
phase CFD results. In the process of determining the 
best conditions for wave breaking, span-wise 
instabilities are observed at the free surface that inspires 
the authors to make a separate detailed study of these 
instabilities. The span-wise instabilities are caused by 
stream-wise vortices downstream of the bump and 
seem to be fortuitously accentuated by the experimental 
setup making them very distinct and larger than 
capillary waves and can possibly be related to real life 
wave instabilities on beaches and around ships or other 
ocean structures. After thorough observations and 
experimental measurements with different bump sizes 
and different water depths, it is concluded that this 
instability at the free surface is caused due to the 
centrifugal force that is generated by the flow 
accelerating over the bump which causes stream-wise 
vorticity downstream of the bump.  

 

 
 
Figure 1. Front view of spanwise instability on a shallow-
water breaking wave on the beach, arrows highlighting width 
of instability (Miami, USA, 12.31.2005). 

 
However, previous studies of bluff body flows 

(Williamson, 1996) have shown that there can be other 
sources of stream-wise vorticity in bluff body wakes. 
The first kind is due to the three dimensional instability 
of Karman vortices, e.g. in circular cylinder flows and 

the second kind is due to the secondary vortices from 
the separating shear layer from the sides of the cylinder. 
The following section discusses the relative importance 
of these secondary stream-wise structures compared to 
the centrifugal instability for the bump flow using 
theoretical analysis and experimental data and 
establishes the fact that the free surface instability 
downstream of the bump is due to the centrifugal 
stream-wise vortices only and not due to any other 
vorticity source.   

The purpose of the first part of this manuscript 
is to derive a non dimensional critical number that 
determines the onset of this free surface instability 
using theoretical analysis similar to Taylor-Couette 
flow for concentric rotating cylinders and validating 
theoretical results by experimental data. 
 

Experimental setup and flow conditions. In 
the experimental setup (figure 2a) a curved bump 
profile, chosen according to Iafrati et. al.(2001), is fixed 
to the bottom of an open channel flume, 27m long, 
0.91m wide and 0.43m high. The water depth above the 
bump (h) is varied as well as the flow speed to generate 
breaking waves downstream of the bump.  

 

 
 

Figure2. Open channel flume with curved bump fixed to the 
bottom (left). Side view of the flow (right). 
 
(a) 

 

 

 

Longitudinal 
braids 
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Figure 3. Top view of span-wise instability (a) h/H = 0.111 
cm. (b) h/H = 0.222 cm. (c) h/H = 0.333 cm. 
 

A concave region is formed immediately 
downstream of the bump before the first wave (figure 
2b) that is generated due to the acceleration of the flow 

 
 

   



over the bump. It is observed that for low water depths 
above the bump (h < 6cm) and low upstream speeds 
(U∞ ~ 1-17 cm/s) the free surface instabilities occur 
downstream of the bump. Figure 3 shows top view of 
the span-wise instability looking from downstream side 
of the flow for varying water depths above the bump. 

Table 2 summarizes the different experimental 
flow par

Table2. Flow conditions 
ight (H) = 11.43 cm  

ameters and conditions for 11.43cm bump. The 
span-wise wavelength of the instability, which is equal 
to the width of the longitudinal braids seen at the free 
surface, for different water depths are measured from 
video images of the free surface with reference scales. 
Since the minimum Weber number is 159 the effects of 
surface tension are negligible. The maximum Reynolds 
number is 12878 and so the whole experiment is carried 
out at sub-critical flow regime.  

 

Bump he
h/H Re∞ We wT/W 

0.056 990 159 0.006 
0.111 2034 1002 0.011 
0.222 5425 1693 0.035 
0.333 8633 5043 0.060 
0.444 12878 7079 0.120 

Note: W is the i s  t -wise wavelength 
of

Figure 4 shows the schematic illustration of 
the flow

 The theoretical analysis for the mean flow is 
based o

e analogous to 
Taylor-C

 flume w dth. wT i  half of he span
 free surface instability. Re∞ is the Reynolds number based on the 

upstream flow speed and bump height,. We = ρV1
2R1/Y, where, V1 is 

the free surface velocity at the concave region, R1 is the radius of 
curvature of the concave region and Y is the surface tension. 

 

 over the bump. The flow separates from the 
bump surface forming a separation streamline (figure 
4a) thus creating a separation bubble below it at a 
certain distance below the free surface.  R1 and R2 are 
the radii of curvatures of the free surface and the 
separation line respectively. The distance between free 
surface and separation line is d. The angular velocity at 
the free surface in the concave region is defined as Ω1, 
and Ω2 is the angular velocity at the separation line. 
Cylindrical coordinate system is chosen to define the 
flow with r and θ as shown on the figure, and z being 
the transverse direction out of the plane of the figure. 
The free surface instability originates at the concave 
region from the trough before the first wave and is 
caused by stream-wise vortices that also start to 
develop from the same location underneath the free 
surface.   

  
n three major assumptions that enable to 

simplify the overall problem formulation. Introduction 
of dye upstream of the bump clearly shows the 
separation streamline having similar shape as the free 
surface downstream of the separation point without any 
radial flow and at the free surface the flow is quite 
steady without any vertical oscillations. It follows that 
within a small region in the narrow gap just 

downstream of the separation point and upstream of the 
region where the instability first sets in, the flow can be 
assumed to be purely circumferential. Secondly, it is 
assumed that the flow is mainly two-dimensional just 
upstream of the instability and so the span-wise 
component of velocity is negligible. The third one 
assumes constant pressure along the separation line 
very close to the separation point due to the presence of 
separation bubble below the separation line. It is quite 
well known that the pressure within the separation 
bubble for cylinder flow is constant and has been 
verified by Kirkil & Constantinescu (2006) and hence 
assuming constant pressure along the separation line 
close to the bump is a valid assumption. 

This kind of flow is found to b
ouette flow with concentric cylinders and the 

inner cylinder rotating at a higher angular velocity. For 
the present setup the free surface having higher angular 
velocity acts as the inner cylinder, the separation line 
acts as the outer cylinder with lower angular velocity 
and the gap width (d) is similar to the gap between 
concentric cylinders. Figure 4b shows the schematic of 
the cross sectional view at the first trough and shows 
the flow pattern with dominant large scale centrifugal 
stream-wise vorticity. Figure 4c shows the smaller scale 
secondary vortices at the crest of the primary wave 
generated from the separating shear layer. The ratio of 
centrifugal vortices to shear layer vortices shown in 
figure 4c is applicable for water depth h/H = 0.333. For 
other water depths the relative sizes of centrifugal and 
shear layer vortices vary. 
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Figure 4. A schematic illustration of the flow. (a) Side view

of stream-wise structures in the 
wake o

 
of the flow (b) Cross sectional view of the flow at the trough 
(section 1). (c) Cross sectional view of the flow at the first 
crest (section 2). 

 
Review 
f circular cylinders. Williamson (1996) 

discussed that for flow behind a circular cylinder 
within a range of 1200<Re∞<200000, there are two 

 
 

   



different phenomena that can cause stream-wise 
vorticity in the wake.  

The first kind of stream-wise vorticity is 
independent of the Reynolds number within that range 
and is generated from the braid regions of Karman 
vortices having a span-wise wavelength almost equal to 
the cylinder diameter. Mansy et. al. (1994) found out 
from their experiments that these stream-wise vortices 
develop at around a downstream distance of ten times 
the cylinder diameter. The present experiments are 
conducted at a range of 990<Re∞<12877. However, in 
the present flow the span-wise wavelength of the free 
surface instability varies with water depth and does not 
scale with the bump height. Besides, the free surface 
instability originates from the trough just downstream 
of the bump which is approximately at a distance of 
half the bump height from the separation point. This 
implies that the free surface instability behind the 
bump is definitely not caused due to the three 
dimensional instability of Karman vortices. 

The second source of stream-wise vorticity is 
the separating shear layer that originates from the sides 
of the cylinder. Williamson (1996) estimated the length 
scales of the shear layer stream-wise vortices given as 
follows: 

 
2/1Re/25 ∞= cSL Dλ                                                      (1) 

                                                                             
where,  λSL is the span-wise wavelength of stream-wise 
vortices generated from the shear layer instability and 
Dc is the cylinder diameter. Sato (1956) suggested that 
for this shear layer instability to appear in the near 
wake, a significant amplification of the instability is 
reached only after a transition distance of,  
 
ZT ~ 75Dc/Re∞1/2                                                       (2)  
                                                                                             

   For the present set of experiments the shear 
layer is generated from the separation streamline. 
Digital PIV measurements in the transverse plane have 
shown evidence of large scale stream-wise vortices in 
between the free surface and separation line right at the 
trough that are caused by centrifugal instability. The 
theoretical values of the sizes of the shear layer vortices 
based on the different critical Reynolds numbers are 
smaller than the stream-wise vortices measured at the 
trough, and their wavelengths do not match the free 
surface span-wise wavelength either, which indicates 
that these shear layer vortices are much smaller 
compared to the ones that cause the free surface 
instability. Table 3 summarizes the comparison of the 
centrifugal vortex sizes measured at the trough with 
secondary shear layer vortices that are measured from 
experiments and also estimated using equation (1). For 
h/H = 0.056, since the Reynolds number is less than 

1200, equation (1) is not applicable. The theoretical 
analysis for shear layer vortices is only applicable for 
infinite water depth flows. For water depth h/H = 0.111, 
since the level is too shallow, equation (1) is probably 
not applicable either and so we see that the predicted 
theoretical value of shear layer vortices is larger than 
centrifugal vortices, even though experimental values 
are lower. For all other cases both the experimental and 
estimated theoretical values of shear layer vortices are 
smaller than the centrifugal vortices. It is interesting to 
note that the sizes of shear layer vortices measured 
from experimental data (wSLE) compare well with the 
theoretical values (wSLT) for higher water depths. This 
is reasonable since increasing water depth means 
reduced free surface effect. As mentioned before PIV 
measurements have shown evidence of stream-wise 
vorticity right at the trough which is upstream of the 
transition distance for most water depths. Subsequent 
PIV measurements downstream of the transition 
distance show evidence of the shear layer vortices near 
the separation line and well below the free surface. This 
implies that even though the shear layer stream-wise 
vortices are present below the free surface downstream 
of the trough, the free surface instability that originates 
at the trough is not caused by them. It is also interesting 
to note that theoretically shear layer stream-wise 
vorticity cannot be present for the lowest water depth 
with Re∞ = 990, since at that Reynolds number shear 
layer vortices are not known to exist according to 
Williamson (1996), but the free surface instability is 
still clearly visible.  

 
Table3. Comparison of vortex sizes for 11.43 cm bump. 

h/H Re∞ ZT/H wT/W WSLE/W WSLT/W 
0.056 990 2.38 0.006 - 0.049 
0.111 2034 1.66 0.011 0.001 0.034 
0.222 5425 1.02 0.035 0.006 0.021 
0.333 8633 0.81 0.060 0.009 0.015 
0.444 12878 0.66 0.120 0.012 0.012 

Note: wSLE is width of secondary shear layer vortex obtained from 
experiments, and wSLT is the theoretical value of shear layer vortex 
width calculated using equation (3.1). 
 

Figure 5 shows the effect of upstream flow 
speed on the width of span-wise instability observed at 
the free surface maintaining the water depth above the 
bump constant, starting from critical condition. At the 
critical condition the vortices are just starting to 
develop and so the width of the span-wise instability is 
not clearly noticeable in figure 5a, however at higher 
speeds (figures 5b, 5c and 5d) it is quite evident that the 
instability is well developed and the vortex width is 
independent of the flow speed and remains constant till 
the point when the primary wave starts to break. 
Centrifugal theoretical analysis predicts that the vortex 
size depends on the gap width between free surface and 
separation line and is independent of the flow speed 
similar to Taylor-Couette flow. If the free surface 

 
 

   



instability is caused by the shear layer vortices, then 
according to equation (1) increasing the flow speed 
would have reduced the vortex sizes which is not 
observed.  
 (3.11) 

 

 
 

Figure 5. Variation of width of instability (11.43cm bump) at 
the free surface with increasing upstream flow velocity for h 
= 2.54cm (a) Critical condition (Re∞ = 5425). (b) Re∞ = 6408. 
(c) Re∞ = 7368. (d) Re∞ = 7871. 

 
Considering all the above experimental 

observations and theoretical arguments, it is concluded 
that the free surface instability is caused only due to the 
centrifugal force effect, however the shear layer 
vortices are also present below the free surface for the 
cases where Re∞ is higher than 1200, and develop only 
after the transition distance and their existence makes 
the flow even more interesting. The following section 
presents the theoretical analysis for the centrifugal 
instability observed at the free surface. 
 

Theoretical analysis. Present study focuses 
on solving the mean flow and perturbation equations 
for flow behind the bump with suitable boundary 
conditions following similar method as Taylor 
instability analysis for viscous Couette flow 
investigated by Chandrasekhar (1961), and obtaining 
experimental data to validate theoretical analysis for 
centrifugal instability.   

 
Mean flow equations. Continuity and Navier-

Stokes equations in cylindrical polar coordinates, for 
viscous incompressible flow are used for theoretical 
analysis. The equations can be converted to 
dimensionless form using the following definitions, 

 

;/;2/;/;/ URtUppRrrUuu =∗=∗=∗=∗ ρ    (3) 
 
 where, U and R are characteristic velocity and length 
scales respectively. The non-dimensional Continuity 
equation is given as follows: 
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The flow is mainly two-dimensional just 

upstream of the instability and so the z – component of 
velocity and gradient vanishes. Since the flow is 
assumed to be purely circumferential and so uθ* is only 
a function of r*.  λ 
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The non-dimensional r-momentum equation is given  
below.. λ λ(c)  (d) 
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Integrating equation (6) with respect to r* we obtain,  
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K1 is the constant of integration that is determined from 
pressure boundary conditions. At the free surface, 

, Y  is the surface tension and We is the Weber 

number. 
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At the separation streamline, , and  ∗=∗
2Rr
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where, p2 is the pressure at the separation line. Surface 
tension effects are negligible as discussed before so the 
Weber number term can be neglected. Since the 
pressure along the separation line is assumed constant, 
p2 is independent of θ, close to the separation point. So 
the constant K1, is independent of θ. Differentiating 

 with respect to θ we obtain, ∗p
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The non-dimensional form of θ – momentum equation 
is given by, 
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Assuming steady state flow, and substituting equation 
(10) in (11) we obtain, 
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The solution to equation (12) gives  

;/ ∗∗+∗∗=∗ rBrAuθ  where A* and B* are constants 
that need to be determined. Reverting back to 
dimensional form we can express the velocity profile as 
given below, 
 
uθ = Ar + B/r; Ω = A+B/r2;                                   (13) 
 
where, the constants A and B are determined from the 
following boundary conditions: 
duθ /dr = 0, at r = R1 due to zero shear stress at the free 
surface, and, uθ/r = Ω2, at r = R2. This gives, 
 

),21/(2
2
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where,  2/1 RR=η

  
If the angular velocity at the free surface is defined as 
Ω1, then we get another relation given by 
 

2
1/1 RBA+=Ω                                 (15) 

  
Substituting the values of A and B from equation (14) 
in (13) we can obtain a unique relation between the 
angular velocities at the free surface and separation line 
in terms of η as given below,  
 

2/)21(1/2 ηµ +==ΩΩ               (16) 
 

Perturbation equations. Chandrasekhar 
(1961) had presented experimental results for both 
narrow (gap width is less than 5% of the mean of radii) 
and wide gap Taylor-Couette flow. In the present setup 
for all experimental cases, the gap width (d = R2-R1) is 

less than 5% of the mean radii and so narrow gap 
assumption is used for solving the perturbation 
equations.  

   Reid (1960) has shown that we can assume 
linear profile for angular velocity for narrow gap case 
for inviscid Couette flow. Figure 6 shows the angular 
velocity profiles for the present problem for both 
narrow and wide gap cases. It can be clearly seen from 
figure 6a, that using linear angular velocity profile 
within the gap for viscous flow over the bump is a 
justified assumption.  

 

 

 

(a) 

(b) 

 
Figure 6. Angular velocity profiles between free surface and 
separation line (a) Narrow gap profile. (b) Wide gap profile 
 

Assuming that the perturbations are also 
circumferential and independent of θ, and following the 
exact same method as described in Chandrasekhar 
(1961), the expression for critical Taylor number is 
given as follows: 
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where, T is the  critical Taylor number. 
The boundary conditions for the perturbation equations 
are given below:  
1. Du = Dv =  Dw = 0 at the free surface due to 
zero shear stress, where, u, v and w are the 
perturbations in the r, θ, z directions respectively and D 
= d/dr.  
2. u = Du = 0 at the separation line, since the flow 
is assumed to be fully circumferential within the gap. 
3. v is non zero at the free surface and also on the 
separation line.  
The perturbation equations have been solved in the 
same way as described in Chandrasekhar (1961) and 
hence the detailed steps of solution have not been 
presented here. The final expression for Taylor number 

 
 

   



as a function of non-dimensional wavelength of 
instability is given as,  
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where, T is the Taylor number, 2/)/11( ηα −= , λ is 
the span-wise wavelength of instability, a = 2πd/λ, d = 
gap width and  ;/1 22 a+= πψ
  

Experimental results. After comparing the 
flow qualities with different bump sizes and 
geometries, a bump with fourth order curvature profile 
and height of 11.43cm is chosen for instability studies. 
Instability experiments are conducted by varying the 
initial water depth (h) above the bump as well as the 
upstream flow speeds. The experimental setup is shown 
in figure 7.  

The water depth above the bump is increased 
from a minimum value of 0.635 cm to a maximum of 
5.08 cm and measurements are obtained for each depth. 
The flow velocity is set at a value where the instability 
first appears downstream of the bump to set the critical 
condition. For comparing theoretical critical Taylor 
number with experimental data, the gap width (d), the 
width of the vortex (wT), the radius of curvature of the 
free surface (R1) at the concave region and the angular 
velocity (Ω2) at the separation line are measured for 
each water depth at the critical condition. For each 
water depth, three overall sets of measurements are 
obtained. Results presented here are the mean of three 
sets.  

Wave gauge is used to measure the free 
surface elevation profiles at the concave region for 
calculating the radius of curvature at the free surface 
(R1). A single servo mechanism wave probe (30cm 
needle with 1200mm/s response time) is mounted on a 
1D traverse which is free to move in the stream-wise 
direction. Surface flow system is used to measure the 
stream-wise velocity components that are obtained at 
the same concave region on the free surface only for the 
lowest water depth. Since the gap width is very small in 
this case, it is difficult to measure the velocity at the 
separation line directly. The free surface velocity, V1 is 
used to estimate the velocity at the separation line using 
equation (15), instead of direct measurement. Digital 
PIV is used to obtain cross-plane velocity vectors and 
vorticity. The setup is shown in figure 7b.   

Still photographs (figure 8a) of free surface 
instability are obtained with reference scales to estimate 
the width (wT = λ/2) of the centrifugal instability 

vortices.  As already discussed previously, the width 
remains constant for any particular water depth even if 
the upstream flow velocity is varied.  
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Figure 7. Experimental setup (a) Surface flow system, LDV 
and Wave gauge (b) 3D PIV system  
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Velocimetry (LDV) is used to measure the velocity 
profiles within the gap between the free surface and the 
separation line. LDV velocity profiles are obtained in 
the vertical direction within the gap width. 

At the separation line a sudden change in 
velocity is noticed which also helps to verify the values 
of gap widths that are estimated using video images. 
The mean flow theoretical velocity profile gives a 
lower velocity at the free surface than the separation 
line, but experiments show that the velocity is actually 
higher at the free surface. This results in the lower 
values of theoretical angular velocities as compared to 
experimental values at the free surface and can be seen 
in figure 8d. This is probably due to the assumption that 
uθ is constant in θ direction, however, the experiments 
actually show variation of uθ with θ which is caused by 
the acceleration of the flow over the bump. The 
velocity values at separation line for all water depths 
could have been estimated by using equation (15) and 
using the surface flow system only but it was decided to 
measure V2 directly, where possible, to obtain more 
accurate measurements.  

To further validate and quantify the vortex size 
and structures, digital particle image velocimetry 
(DPIV) measurements are obtained as shown in figure 
7b. Two underwater cameras are used with a laser light 
sheet that is fired along the cross-plane to measure the 
instability vortices. 
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Figure 9. Cross-plane DPIV velocity vector plots for h = 
3.81cm. First trough (z/H = 0.48) upstream of primary wave 
(top). 4 cm downstream (z/H = 0.83) of first trough (bottom). 
 

The measurements are obtained at the trough 
of the primary wave and subsequently at more 
downstream locations. Figure 9 shows the velocity 
vectors that are calculated from cross correlation of 
DPIV images for h = 3.81cm. The presence of counter 
rotating stream-wise vortices in between free surface 

and separation line caused by centrifugal instability is 
quite evident at the trough (figure 9a). The first trough 
is located upstream of the transition distance (table 3) 
for h = 3.81 cm and that is the reason why we do not 
see any shear layer vortices in figure 7a. As we move 
downstream of the transition distance (figure 9b) small 
scale incoherent stream-wise vortices can be observed 
near the separation line. The stream-wise vortices are 
formed due to the separated shear layer as discussed 
before (figure 4c). However, since these vortices are 
well below the free surface and much smaller in scale 
compared to the centrifugal stream-wise vortices, their 
effect on the free surface deformation is almost 
negligible. It is unclear as to why the centrifugal 
vortices are not distinctly seen in figure 9b. One of the 
possible reasons might be due to the low frame rate of 
the PIV cameras. The centrifugal vortices are spatially 
unsteady and move in the transverse direction with 
certain frequencies. Since the camera frame rate is very 
low (4.5 Hz) and the number of images obtained is 50, 
which is also insufficient, it is very likely that the PIV 
cameras missed the vortical structures in between the 
frames. For future experiments it is necessary to 
increase the camera frame rate and number of images to 
successfully measure the centrifugal vortices 
downstream of the trough. The centrifugal vortex sizes 
measured at the trough are consistent with the span-
wise wavelength of instability measured from the scars 
at the free surface for all water depths, thus further 
confirming that the free surface instability is due to 
centrifugal force effect and not due to the shear layer 
instability.  

The values of R1, average centrifugal vortex 
width (wT), gap width (d) and velocity at the separation 
line (V2) have been used to calculate the experimental 
critical Taylor numbers for each water depth using 
equation (17). Table 4 summarizes the values for 
different experimental parameters and the calculated 
critical Taylor numbers.  
  

Table 4. Critical Taylor numbers  
Bump height = 11.43 cm 

h/H 0.056 0.111 0.222 0.333 0.444 
wT/W 0.006 0.011 0.035 0.060 0.120 

2d/(R1+R2) 0.032 0.016 0.017 0.016 0.013 
a 2.04 1.73 0.86 0.77 0.60 

Re 814 1702 2861 5053 8171 
Fr 0.529 0.512 0.586 0.646 0.782 
We 159 1002 1693 5043 7079 
η 0.968 0.984 0.983 0.988 0.987 

Taylor(expt.) 2441 2955 9771 13754 44260 
Taylor(theory) 2314 2685 7831 9583 14880 

Note: Kinematic viscosity (ν) = 1.5e-6 m2/s. Experimental values 
of a, were calculated from vortex width (a = πd/w). 

ν/Re 2dV= ,
1/VgdFr = , and , where. Y is the 

surface tension. 
YRVWe /1

2
1ρ=
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Uncertainties in experimentally determined 
critical Taylor numbers (table 5) are evaluated. The 
maximum percentage uncertainty is less than 5.54% 
and the experiments are quite repeatable starting from 
the initial conditions. 

 
Table5. Bias limit, Precision limit and total Uncertainty 
for Taylor number evaluation. 

Bump size 11.43 cm  
h/D Bias Precision Total uncertainty % 

Uncertainty 
0.111 82 48 94 3.19 
0.222 245 90 261 2.67 
0.333 309 70 317 2.31 
0.444 2558 242 2570 5.54 

 
Figure 10 shows the comparison of theoretical 

and experimental critical Taylor numbers for different 
water depths for both bumps. Theoretical Taylor curve 
is plotted with respect to (a) using equation (18). The 
flow is stable for all Taylor numbers below the 
theoretical solid curve for any value of (a) and the 
critical values which determine the onset of instability 
lie on the curve.  
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Figure 10. Critical Taylor number – comparison between 
experimental and theoretical values 
 

The critical values from experiments are quite 
close to the predicted Taylor numbers. For water depths 
of 5 cm and higher, the instability span-wise 
wavelength increases significantly to almost 25% of the 
width of the flume and cannot be observed as distinctly 
as the lower depths. Hence the effect of the side walls 
cannot be ignored for such large span-wise vortices and 
current experimental results show deviation from 
predicted Taylor numbers. 
 

Summary of instability analysis. Theoretical 
analysis followed by validation with experimental data 
for flow over the bottom bump, helped us achieve a 
solid physical understanding of otherwise a very 
complicated flow. Centrifugal instability analysis has 
been successfully used to predict critical Taylor number 
for free surface instability downstream of the bump. 
For water depths lower than 5.08 cm, the theory 
matches well with the experiments. For water depth 
5.08 cm, the effect of the flume side walls might cause 
the deviation from expected results. For future it might 

be interesting to conduct the same experiment in an 
open channel with larger aspect ratio and check if the 
side wall effects are eliminated. In addition to the 
centrifugal vortices, stream-wise vortices generated 
from the separating shear layer also exist downstream 
of the transition distance. However, since the sizes of 
the shear layer vortices are much smaller compared to 
the centrifugal vortices and the instability actually 
originates upstream of their transition distance, the 
shear layer vortices do not affect the free surface 
instability. 

Even though good quality experimental data 
has been obtained for the estimates of vortex width 
from free surface photographs, gap widths and radius of 
curvatures of the free surface in the concave region, it 
will be worthwhile to obtain more extensive PIV 
measurements for all water depths in both cross-planes 
and planes parallel to the flow for different bump sizes. 
However, vector plots from PIV measurements at the 
trough have provided sufficient evidence of the 
existence of centrifugal vortices and their dominating 
effect in causing the free surface instability. PIV 
measurements further downstream were unable to 
properly capture the centrifugal vortices, which might 
be due to low camera frame rate and insufficient 
number of images. This will be improved in future 
experiments. 

This present instability analysis might be 
extended to real life wave breaking on beaches, around 
ships and ocean structures. However, further studies are 
necessary to determine if these instabilities actually 
lead to deep or shallow water wave breaking and if so, 
then it can probably be used as an improved method for 
predicting the criteria for wave breaking. Rhee and 
Stern (2002) evaluated wave breaking criteria based on 
vertical pressure gradient, wave slope and wave 
steepness, but most of the current methods are largely 
empirical and it still remains an unresolved issue. 
 
Periodic breaking 
After evaluating the flow patterns with different bump 
sizes, it is found that increasing the bump size 
increases the wave height and so the largest bump size 
with optimum water depth (fourth order curvature 
bump of height 27.94cm and h = 3.81 cm) is chosen to 
generate the best plunging breaking wave. This also 
gives the desired wave height of 10 cm. As the speed is 
increased from the zero condition, at first a wave train 
is formed downstream of the bump with the primary 
wave being the largest. Free surface span-wise 
instabilities start appearing with slightly higher flow 
speed. As the speed is increased further these 
instabilities tend to merge together and form localized 
three dimensional plunging breakers. The breaking 
occurs at random span-wise locations and repeats itself 
after certain intervals. It is interesting to observe that 

 
 

   



the span-wise location of this kind of periodic breaking 
can be controlled by introducing upstream disturbances 
close to the bump. The time interval between two 
successive breakers can also be controlled by 
controlling the timing of the upstream disturbance. At 
the instant of breaking the wave has a distinct 
triangular structure when viewed from the top. Figure 9 
shows the top view of the wave as seen from the 
upstream direction.  

 

 
 
Figure 11. Top-view of periodic wave breaking showing 
typical triangular structure. 
 
Impulsive breaking 
The flow conditions for impulsive breaking are very 
different from the periodic ones. Instead of maintaining 
a steady upstream flow speed, the flow is suddenly 
accelerated from zero to maximum value (0.7 m/s) over 
a period of few seconds. Only one single plunging 
breaker can be generated this way, after which the flow 
changes to a hydraulic jump and hence the term 
“impulsive”. The breaking wave height, location and 
pattern is repeatable if the initial conditions are exactly 
the same. The bump height to water depth ratio is 
chosen according to Iafrati et. al 2001. The water height 
is varied with an attempt to obtain two dimensional 
plunging breaking that is repeatable, starting from the 
exact same initial conditions. The wave breaking 
phenomenon is found to be extremely sensitive to the 
initial conditions.  

 

 
 
Figure 12. Side view of impulsive plunging breaker. 
 

Sufficient time is given between two 
consecutive runs to ensure that the water in the flume is 
calm and free from any disturbance that can eventually 

get magnified and affect the breaking.  Three fourth- 
order curvature bumps of height 9cm, 11.4cm and 
14cm are tested and finally the 11.43cm bump with h = 
11.43cm gave the best results with wave height about 
10 cm.  Detailed times series video snapshots and their 
comparison with CFD simulations are presented in the 
later section.  Figure 10 shows an instantaneous 
photograph of the side view of an impulsive breaker. 

 
TWO PHASE LEVEL SET COMPUTATIONS & 
GHOST FLUID CFD 
 
Background  
As discussed in the general introduction, an important 
class of moving interface problems is encountered in 
the study of ship hydrodynamics, where free surface 
turbulent flow around submerged bodies (bumps, foils, 
submarines, etc.) or surface-piercing bodies (surface 
ships) constitute a challenge. Breaking waves, bubble 
entrainment, drop formation and air/wave interactions 
further complicate the problem. Basic research in this 
field concentrates on features such as air forces on the 
ship, air induced waves, vortex structures, and wakes 
both in water and air near the interface and the solid 
walls, etc. Some factors make computation of these 
problems especially difficult, in particular the 
singularity caused by large air/water density and 
viscosity ratios, very high Reynolds numbers with the 
resulting very thin boundary layer, complex geometries 
and free surface topologies.  

Computations about the above problems have 
been done including single-phase or two-phase models 
and numerical methods. For example, Vogt and 
Larsson (1999), Iafrati et al. (2001), studied the free 
surface flow above submerged bump or foil. Hochbaum 
et al. (1999, 2000, 2002), Carrica and Wilson et al. 
(2004, 2006), Mascio et al. (2006) computed 3D 
turbulent flow around ship. Iafrati at al. (2001, 2005), 
Christensen et al., (2006) studied spilling or plunging 
wave breaking phenomena. Reddy et al. (2000) and 
Syms (2004) simulated air-wakes only in air region by 
assuming flat air/water interface as a computational 
boundary. However, further work is necessary to 
implement the detailed air/water flow, and improve the 
computation of air wakes by using completely coupled 
simulation both in air and water region while, 
considering ship deck and configuration and motion of 
real air/water free surface.   

In this part of the paper we discuss two two-
phase level set methods as applied to turbulent free 
surface flows: the classic Heaviside Function Method 
(HFM) and the Ghost Fluid Method (GFM) (Fedkiw et 
al., 1999,), (Kang et al., 2000), (Liu et al., 2000). On 
the HFM the fluid density and viscosity vary smoothly 
across the interface, while the GFM is characterized by 
a sharp interface. This last property makes GFM 

 
 

   



specially suited for complex free surface 3D problems, 
in which relatively coarse grids need to be used. While 
HFM has been used for curvilinear coordinates 
(Hochbaum and Vogt 2002), the implementation of 
GFM for body-fitted structured grids is significantly 
more complex and is introduced in this paper. We 
present some 2D calculations with both the HFM and 
the GFM, and demonstrate the superiority of the second 
method. We then use the GFM to compute the air/water 
flow around a surface combatant. As opposed to 
previous computations of ship flows using two-phase 
level set, that were concerned only with the water flow, 
this example solves simultaneously the water flow 
around the hull and the air flow around an essentially 
flat deck. We also discuss the implementation of the 
Fast Marching Method with close point re-initialization 
algorithm in curvilinear grids. 

 
Mathematical model 
A single-fluid with variable properties is adopted to 
compute the immiscible and incompressible two-phase 
flow, therefore both phases (air and water) are advected 
with a common velocity. The mass and momentum 
conservation equations are as follows: 
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The effective Reynolds number Reeff is computed using 
a blended k - ω model (Menter 1994): 
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with ( ) 21 Frρ−∇= zF , kFrzpp ρ32* 2 ++= ,  
p* is the dimensionless absolute pressure, p the 
piezometric pressure (only in water), µ is the molecular 
viscosity, γt is the eddy viscosity, ll LU µρ 0Re = , 

gLUFr 0= , t
eff

γµ
+=

ReRe
1 , 

ω
ργ k

t = , and Sk 

and Sω are the sources of Eqs. (21) and (22). Surface 
tension is neglected for our large scale problems. 

   For the GFM method, the piezometric 
pressure is adopted for both fluids, and so some 

modifications are necessary in equation (20), where 
piezometric pressure and 
F=0. We use level set function 

,3/2Fr/* 2 kzpp ρρ ++=
ϕ  to capture the 

interface:  
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Here, γ is an artificial wave damping function (Vogt 
and Larsson, 1999) and ηw is the wave elevation. On the 
HFM a Heaviside function is introduced 
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where, ε is a prescribed “thickness” of the interface. 
The density and viscosity all over the domain are 
defined as follows, 
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In addition, the modified δ function is written 
as: 
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   In contrast to the HFM, the GFM has a sharp 
free surface with zero transition thickness. The density 
and pressure satisfy the real jump conditions, the details 
are introduced in (Huang et al., 2006). The piezometric 
pressure jump conditions are: 

[ ] [ ] 2Fr
zp Iρ=                                                              (27) 
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with  as the Iz z value on the interface.  
 
Numerical methods 
The HFM and GFM algorithms were implemented in 
the code CFDShip-Iowa. The general algorithms used 
in CFDShip-Iowa are described in Carrica et al. (2006a 
and 2006b). For HFM algorithms, the fluid properties 
of the different fluids are included in the model. For 
GFM, we discuss how to enforce different fluids here. 

    We extend the GFM to curvilinear grids for 
free surface turbulent problems. First we transform 

 
 

   



jump conditions of all variables into an arbitrary 
coordinate ξ. From Eq. (28), the jump condition of 
pressure in this direction can be written as   
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where β=1/ρ. Secondly, we use appropriate numerical 
techniques to build the pressure matrix. Since, the 
pressure and pressure gradient are discontinuous across 
the interface for jump condition mentioned above, it 
causes an ill conditioned pressure matrix. Fedkiw et al. 
(1999) and Zhou et al. (2006) used fictitious points in 
the other fluid in a Cartesian grid to enforce the jump 
conditions. Following the ideas of Carrica et al. (2006a) 
for enforcing the interfacial pressure in a curvilinear 
grid with the single phase level-set method, we obtain a 
general expression for the ghost pressure on any 
neighboring point in a different fluid on curvilinear 
grids  (figure 13). Combining Eqs. (27) and (29) for a 
point ijk and any neighbor in a different fluid mnk we 
obtain, 

 

[ ]ρ
β
β

β
β

β
β

2
1

Fr
z

ppp I
ijkmnk

G
mnk

−−−
+ −⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+=       (30) 

 
( ) −+ +−= λββλβ 1   (31)                                   

 
( )mnkijkijk ϕϕϕλ −=   (32)                        

 
This gives the ghost pressure in the neighboring point 
Q. By replacing Eq. (30) in the pressure matrix 
coefficient for the neighboring point we obtain new 
coefficients for the local and neighboring points, and an 
additional term for the RHS. 
 

             
 
Figure 13. Jump conditions enforcement. 
 

Furthermore, we implemented a projection 
method, and found that it was more consistent 
compared to PISO method to fit the pressure and its 
gradient jump condition. In addition, for simplicity, we 

assume that the viscosity and turbulent variables and 
their derivatives are continuous across the interface.   

In order to keep the level set function a 
distance function at all times, we extend the re-
initialization method of Adalsteinsson & Sethian (1999) 
to three dimensional curvilinear grids. The details are 
written in (Carrica et al., 2006a) and (Huang et al., 
2006). 

 
Computation examples 

Plunging wave breaking above submerged 
bump. As a first test, we select an air/water impulsive 
plunging breaking wave with complex free surface 
topology. INSEAN’s smooth bump (see Iafrati et al., 
2001) is adopted. Only the HFM is used in this 
example. The topography of bump is given as follows, 
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where, h is the water depth, a is the bump half length 
and d is the bump height. The reference length is the 
bump’s half length, and so h=0.844, a=1, d=0.4. The 
2D computational domain extends 28×2.844, with 
461×191 grid points. Since CFDShip-Iowa is a 3D 
code, 5 grid points are used in the transverse direction. 
Initially the fluid is static, and the flow is suddenly 
accelerated from that state. Non-slip boundary 
conditions are used on the bump surface and bottom 
boundary, inlet, exit, and far field are set on other 
boundaries (Huang et al., 2006). Blended k-ε/k-ω and 
DES turbulence models (Xing et al., 2004) are used. A 
numerical beach is used in the upstream and 
downstream far regions to avoid wave reflections on 
the inlet and exit boundaries. The detailed evolution of 
the free surface computed by HFM and comparison 
with experimental results are presented in Figure 14.  

The two phase results are able to capture the 
initial stages of plunging breaker, including the initial 
overturning of the wave, air entrapment, the first splash 
after the jet impact, the second splash when the 
remaining wave overturns, and matches well with 
experimental data. At the later stage the wave gets 
swept downstream and due to the presence of too many 
bubbles in the flow, it is difficult to visualize any 
distinct structures from EFD photographs and so 
comparison becomes more difficult. 
 

Sub-critical flow over a bump. The sub-
critical free surface flow over a bump is a typical 
problem to validate free surface methods. In this 2D 
problem the topography is (non- dimensionalized with 
bump length, Cahouet, 1984)  
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with h=0.5 the water depth, H=0.1 the bump height. 
The free surface is initially at z=0. The bump is placed 
at the bottom of a channel with still water, starts 
suddenly and evolves to a steady solution. The 
condition for Fr =0.304 and Re=3х105 was computed 
with single-phase level set, HFM and GFM with slip 
boundary condition, using inviscid or viscous model for 
the latter one. Computation domain is 17×2.1 with 
245×111 grid points. The air/water density and 
viscosity ratios are 1.2×10-3 and 1.8×10-2. Figure 15 
shows a comparison of the free surface elevation 
between all methods and experiments. We can see that 
both the HFM and the GFM outperform the single-
phase level set method for this test. However, for the 
velocity field, the HFM predicts the location of the 
vortices caused by the wave being too high, as shown 
in Figure 16. This is caused by the artificial thickness 
introduced in Eq. (24). This thickness cannot be set 
arbitrarily small but has to cover 5~10 grid points, thus 
resulting in a need for finer grids for the HFM 
compared to GFM. 
 

 
 
Figure 14. Comparison of CFD and EFD for  impulsive 
plunging breaking wave profile with accelerated flow and 
smaller bump 
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Figure 15. Wave elevation for a subcritical bump 

 
Free surface turbulent flow around a ship 

model DTMB5512. Simulations were performed for a 
model surface combatant DTMB 5512 advancing in 
calm water at two Froude numbers, Fr=0.28 and 
Fr=0.41, corresponding to Reynolds numbers 
Re=4.85х106 and Re=710х106, respectively. The results 
for Fr=0.28 are compared with experiment data, and for 
Fr=0.41 the results are compared with single-phase 
computations in a fine grid. The air/water density and 
viscosity ratios are 1.2×10-3 and 1.8×10-2. The GFM is 
used in this computation, enforcing jump conditions for 
the pressure and using smooth Heaviside functions for 
the momentum and turbulence equations.  A relatively 
coarse double O grid is used from the hull surface to 
the far-filed boundary, with 615,000 grid points, 
distributed in 16 blocks. Inlet boundary conditions are 
used on the entire outer boundary, non-slip boundary 
condition is set on the ship hull, and symmetry 
condition is set on the y=0 plane. The computation 
starts impulsively from a static condition. 
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Figure 16. Velocity field for a subcritical bump. HFM (Top) 
GFM (Bottom) 
 

From table 6, we can see the differences of 
resistances between experimental data and CFD. 

 
 

   



Resistance values are small for both Fr numbers, 
wherein, the relative error is 4.77% and 5.65% for 
Fr=0.28 and Fr=0.41 respectively. 

 
Table6. Resistance for DTMB 5512 

 Experiment CFD Error (%) 
Fr=0.28 0.00461 0.00483 4.77 
Fr=0.41 0.00673 0.00711 5.65 
 

The free surface elevation compared with experimental 
data for  is shown in Figure 17.  28.0=Fr
 

 
 

Figure 17. Wave elevation (Fr=0.28) 
 

In Figure 18, we compare the two-phase 
computation for the case with against single-
phase results in a much finer grid (3.84 million points) 
with overset grids which is validated for some typical 
ship cases (there is no experimental data in the whole 
field for this case). The general results are good, though 
wave dissipation is observed in the far field, mainly for 
the Fr=0.28 case. This is to be expected for this level of 
refinement in a double-O grid. The Fr=0.41 case cannot 
capture the bow breaking wave, again as expected for 
this level of resolution, and thus differences are 
observed everywhere downstream.  

41.0=Fr

 

 
 

Figure 18. Wave elevation (Fr=0.41) 
 

    Figure 19 shows computational results and 
experimental data (Longo and Stern, 2005) for u 
velocity distribution in the nominal wake plane, with 
excellent agreement.  
 

 
 

Figure 19. Axial velocity at nominal wake plane 
 

 
 
Figure 20.  Streamlines in the air region (Fr=0.28, front 
view). The streamlines are colored by axial velocity on the 
earth system, 13 levels: -0.20~0.10, free surface is colored by 
z value, 21 levels: -0.005-0.01, the local vortex is on the Q = 
10 iso-surface. 
 

Notice that the GFM computation predicts the 
flow field in the air region and near the interface. 
Figure 20 and 21 show the free surface and the 
streamlines in the air region for the cases with Fr=0.28 
and Fr=0.41, respectively. Two types of streamlines are 
shown: both are colored by axial velocity in an earth 
fixed coordinate system. Notice the ability of the GFM 
to capture the orbital velocity caused by the waves, and 
vortices detaching from the bow region. These vortices 
cause a wake shown clearly in Figure 19. 
 

 
 
Figure 21.  Streamlines in the air region (Fr=0.41, front 
view). The streamlines are colored by axial velocity on the 
earth system, 13 levels: -0.30~0.10, free surface is colored by 
z value, 21 levels: -0.01-0.02, the local vortex is on the Q = 
10 isosurface. 
 

Summary of two-phase level set 
computations. Two two-phase level set methods, HFM 
and GFM are extended to curvilinear body-fitted grid to 
simulate air/water free surface turbulent flows. The 

 
 

   



methods are validated with three cases: plunging wave 
breaking, sub-critical free surface flows caused by a 
submerged bump, and free surface turbulent flow both 
in air and water region around a ship model DTMB 
5512. The results for the sub-critical flow over the 
bump show that the GFM has superior performance for 
the grid spacing that is to be expected in ship 
computations, due to the explicit enforcement of the 
jump conditions. The HFM is limited by requirements 
of very fine discretization near the free surface. For all 
cases, the results are in good agreement with 
experimental data and corresponding single-phase level 
set computations. Although the two-phase method faces 
some difficulties caused by large density ratios, it can 
resolve the flow field in the air region.  
 
TWO PHASE LEVEL SET EMBEDDED 
BOUNDARY CARTESIAN GRID APPROACH 
 
Background 
Wave breaking is an important subject in geophysics, 
coastal and marine engineering. Although significant 
progress in theoretical, experimental, and numerical 
aspects has been made during the past decade, several 
substantial characteristics of breakers in nature have not 
been investigated in detail. Among them are three 
dimensional effects, which present greater challenge to 
further studies, especially numerical ones, due to the 
exceptional demand for numerical methods and 
extensive computer power requirement. 

Currently, we are developing a high-fidelity 
and cost-effective computational tool for the 
simulations of three-dimensional two-phase (air /water) 
turbulent flows involving complex stationary /moving 
solid boundaries and strong air/water interactions, i.e., 
breaking waves. The basic idea is to use a highly 
efficient Cartesian solver for the background flow field, 
while a curvilinear solver is used for the very thin 
boundary layer attaching the ship hull. The 
communication between these two solvers is done via 
the sophisticated overset grid tool SUGGAR. As a first 
step, we shall demonstrate the development of our 
Cartesian solver for complicated two-phase flows in 
this paper. And instead of the curvilinear solver linked 
by SUGGAR, an embedded boundary method is 
adopted for the immersed bodies. This method was 
originated by Peskin (1972), in which the effects of 
solid/elastic boundaries on the fluid are modeled by a 
set of body forces distributed over the nearby flow field 
of the immersed boundaries. In Fadlun et al. (2000) the 
concept of body forcing was also adopted, however, in 
a discrete manner and a sharp interface was obtained. 
The latter, i.e., the so-called direct forcing approach, 
has gained increased popularity in recent years (see 
Mittal and Iaccarino 2005 for a review). In these 
methods, usually a linear/quadratic distribution of the 

velocity near the wall is assumed and the first grid point 
away from the wall needs to be in the viscous sublayer 
for turbulence flow calculations. Therefore, high 
Reynolds number flow simulations using embedded 
boundary methods require enormous grid points near 
the wall.   As a result of this limitation, here we only 
show two cases at low and moderate Reynolds 
numbers, although high Reynolds number flows can be 
easily calculated by adding turbulence models and wall 
models into the current embedded boundary Cartesian 
grid approach: the two-dimensional plunging breaking 
waves by a surface-mounted bump discussed in the 
previous sections (also in Iafrati et al. 2001) and the 
non-breaking waves generated by a fully submerged 
NACA 0012 hydrofoil (Duncan 1983). 

 
Computational method 
The level set formulation for the incompressible flows 
of two immiscible fluids separated by an interface 
given by Chang et al (1996) is used here. In this 
approach, one set of equations for both fluids are solved 
with the density and viscosity jumps across the 
interface smoothed by a Heaviside function. The 
surface tension is modeled as a distributed singular 
force around the interface. The smooth Heaviside 
function and Dirac delta function are based on the level 
set function. The equations used in this part are given in 
previous CFD section with no contribution to Reeff from 
turbulence models, i.e., 0tγ = . The level set function is 
evolved using an Eulerian convection equation and 
reinitialized using a similar equation given by Sussman 
et al (1994) to keep the level set as a distance function. 
Here we adopt the local (narrow band) level set method 
by Peng et al (1999) for the level set and the re-
initialization equations. 

The embedded boundary formulation by Yang 
and Balaras (2006) is adopted here to treat the 
immersed boundaries/bodies in a non-uniform 
Cartesian grid. In this approach, the grid generation for 
complex geometries is trivial as the requirement that 
the grid points coincide with the boundary, which is 
imperative for body-fitted methods, is relaxed; while 
the solution near the immersed boundary is 
reconstructed using momentum forcing in a sharp-
interface manner. Due to the fact that the grid lines do 
not align with the immersed boundaries, in order to 
capture the thinner boundary layer for higher Reynolds 
number, the Cartesian grid has to be refined in more 
than one direction and usually more grid points are 
required comparing with body fitted grids. Both local 
grid refinement and wall layer modeling techniques are 
necessary for embedded boundary approach to be 
applied in the computations of high Reynolds number 
flows in naval hydrodynamics.  

A fractional step method is used to solve the 
Navier-Stokes equations. The spatial discretization 

 
 

   



methods use are the standard second-order central 
difference schemes for the Navier-Stokes equations on 
a staggered grid and fifth order WENO scheme for the 
convective terms. The time advancement scheme is a 
semi-implicit second-order Crank-Nicolson scheme for 
the diagonal viscous terms and second-order Adams-
Bashforth scheme for the convective and other terms. 
The parallelization is done via a domain decomposition 
technique (slab decomposition in streamwise direction) 
using the MPI library. We use the parallel tridiagonal 
system solver given by Mattor et al (1995) for 
tridiagonal linear equations rising from the momentum 
equations and the multigrid solver from PETSc library 
(Balay et al., 1997) for pressure Poisson equation. 

The level set and the reinitialization equations 
are solved using third order TVD Runge-Kutta scheme 
(Shu and Osher 1988) for time advancement and fifth-
order HJ WENO scheme (Jiang and Peng, 2000) for 
spatial discretization. The additional solutions of these 
equations do not pose a significant overhead as they are 
solved in a narrow band about several grid-cell wide. 

At each time step, the level set equation is first 
solved to advance the interface position, then the 
reinitialization equation is iterated (usually, 2 
iterations) to keep the level set function as a good 
approximate of the signed distance function. With this 
new interface position (zero level set), the density and 
viscosity of two different phases are smoothed across 
the interface. Then the immersed boundaries are 
defined and embedded boundary information is set up 
(note this step is done only once for stationary body 
problem). With the above information, the momentum 
equations are solved with a pressure field from the 
previous time step to give a predicted velocity field, 
which is not divergence free. Thus, a Poisson equation 
for the pressure correction is formed and solved using a 
multigrid method via PETSc. With the pressure 
correction the velocity and pressure fields are updated 
to the current time step.  

The solution of Poisson equation is the most 
expensive part and takes more than 90 per cent of the 
CPU time. Here a tight convergence criterion for the 
Poisson equation, the relative residual norm 

12
2

10ε −≤ , is used. With three grid levels and GMRES 
as the smoother one, the PETSc multigrid solver can 
converge in around 15 iterations for the two-
dimensional cases presented here. The average CPU 
cost is about  second per (grid-point time-
step) on the NAVO MSRC IBM Cluster 1600 equipped 
with 1.7GHz Power4+ processors.  

41.5 10−×

 
Breaking wave simulation. In this part we 

demonstrate the application of our level set/embedded 
boundary Cartesian grid approach in the breaking wave 
simulations.  

 

 
 
Figure 22. Computational domain for breaking waves 
over a surface-mounted bump. 
 

Figure 22 gives the schematic of the 
computational setup for the impulsive plunging 
breaking waves behind a surface mounted bump, which 
have been studied both experimentally and calculated 
using body-fitted grid in previous parts. 

The computational domain is 24 2L L×  and 
the number of grid points is 102  in the 
streamwise and cross-stream directions, respectively. A 
simulation has been performed at Re = 1, 000 and Fr = 
0.317 based on the bulk inflow velocity and half bump 
length. Figure 14 (shown previously) gives the 
instantaneous breaking wave profiles and vorticity 
contours at several instances.  

4 512×

 
Submerged hydrofoil simulation. Here we 

only show a preliminary two dimensional simulation of 
the non-breaking wave by a submerged hydrofoil. The 
computational domain, 19 3L L×  in the streamwise and 
cross-stream directions, respectively, with  the 
hydrofoil chord length, is shown in Figure 23 and the 
corresponding grid points used are 102 . 

L

4 448×
 

 
 
Figure 23. Computational domain for a submerged 
hydrofoil in a uniform flow. 

 
The Reynolds number based on the uniform 

inflow velocity U and the hydrofoil chord length L is 
 with 4Re / 5 10UL ν= = × ν  the kinematic viscosity of 

the liquid phase, which is lower than that in the 
experiment (Duncan 1983). The Froude 
number 

51.624 10×
Fr / 0.5672U gL= = . The hydrofoil has a 

constant positive attack angle  and a constant 
depth of submergence at the mid-chord position, 

5α = o

0.951sd = . The boundary conditions shown in Figure 
23 are used. The comparison of wave profiles from the 
experiment and the present simulation are quite good as 
given in Figure 24, except for the fact that the 
simulation under predicted the first wave. 

 
 

   



 
 
Figure 24.  Wave profile generated by a submerged 
hydrofoil. 
 

 
 
Figure 25. Time series of drag and lift coefficients for 
a submerged hydrofoil. 
 

Figure 25 shows the time history of the drag 
and lift coefficients. An instantaneous snapshot of the 
vortices shed from the hydrofoil is presented in Figure 
26 and the corresponding close-up around the hydrofoil 
is given in Figure 27. The vortex shedding pattern is 
very similar to the  case by Chen and 
Chwang (2002). However, a feature missed in their 
results is the surface vorticity distribution as they 
solved only for the liquid phase. 

4Re 3 10= ×

 

 
 

Figure 26. Instantaneous vorticity contours. Purple line 
identifies the free surface. 

 

 
 

Figure 27. A close-up view of the vorticity distribution 
near the hydrofoil 
 
CONLCUDING REMARKS 
 
The optimum flow parameters and conditions for 
generating both periodic and impulsive plunging wave 
breaking were achieved after detailed experimental 

studies with different bump sizes and water depths in 
the open channel flume. While impulsive breaking is 
mostly two dimensional, periodic breaking is 
characterized by span-wise free surface instability at 
low upstream flow velocities prior to the breaking 
process. A critical non-dimensional Taylor number that 
determines the onset of this instability is derived from 
theoretical analysis and the theoretical predictions 
matched well with the experimental values. Future 
work will mainly focus on actual wave breaking 
measurements including turbulence velocity and 
vorticity fields for both 2D and stereo PIV 
measurements to properly characterize the entire 3D 
flow field around a plunging breaker for both periodic 
and impulsive breaking and the experimental data will 
be compared with CFD results. 

The HFM has been implemented into a 
modified version of the curvilinear grids solver 
CFDShip-Iowa. An unsteady plunging breaking wave 
and a subcritical bump were computed with this 
method, showing good agreement with experimental 
data. A novel implementation of the GFM to 
curvilinear grids was presented, where the jump 
conditions are enforced explicitly whenever any of the 
neighbors in a 19 point stencil is in a different fluid. 
This method was used first to compute the subcritical 
free surface flow over a bump. 

The comparison of results between HFM and 
GFM for the flow over a bump clearly shows that the 
transition region seriously limits the accuracy of the 
HFM method if the grids are not very fine. The ability 
of the GFM to maintain a sharp interface greatly 
benefits computations where the grids are not 
extremely fine. On the other hand, HFM is easier to 
implement and its robustness can be increased by 
enlarging the transition region (at the cost of accuracy). 
This motivated our selection of GFM as the method to 
implement into CFDShip-Iowa version 5, a curvilinear 
two-phase solver.  

The GFM was used to solve the air/water flow 
around a DTMB 5512 model with an essentially 
horizontal deck. The CFD results are promising and 
compare well with the experimental data. One of the 
drawbacks of the GFM is the complexity involved in 
adding overset capability. This task is currently under 
way. Other areas of current and future work include 
implementation of a second-order interpolation to 
enforce the pressure jump conditions, implementation 
of the jump conditions will be implemented for 
viscosity, velocity gradients and turbulent quantities, 
and link to the full capabilities of CFDShip-Iowa 
version 4. 

The two-phase level set embedded boundary 
Cartesian grid method was presented. The method has 
proven to be very efficient and accurate as higher-order 
schemes and scalable multigrid Poisson solvers have 

 
 

   



been easily implemented. Computational results 
obtained for a submerged hydrofoil and an unsteady 
bump flow show the potential of the method. In three 
dimensional simulations, a wall modeling technique 
similar to that by Tessicini et al. (2002) for embedded 
boundary methods will be implemented and validated 
to capture the effects of thin boundary layers at high 
Reynolds numbers.  For very high Reynolds numbers 
body fitted grids will be necessary, and thus an overset 
or hybrid grid approach, which combines the 
advantages of Cartesian and curvilinear solvers, is 
imperative in the near future. This approach has 
enormous potential and is being explored, both for 
single-phase and two-phase level set codes. The 
expected improvement with respect to computational 
cost can be one order of magnitude. 
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