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Abstract

In the present paper we present a methodology that is applicable to large-eddy

simulations of fluid structure interaction problems. The fluid flow equations are

solved on a fixed grid that does not conform to the structure, and boundary condi-

tions are imposed using a local reconstruction procedure. The structure that un-

dergoes both linear-elastic and large-angle/large-displacement rigid body motions

is strongly coupled to the fluid using a predictor-corrector approach. Preliminary

results for both laminar and turbulent flow problems are included.
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1 Introduction

Numerical simulations of turbulent and transitional flows with dynamically moving

boundaries are amongst the most challenging problems in computational mechanics.

Although a variety of fluid-structure interaction algorithms has been developed over the

years, relatively few applications in turbulent and transitional flows have been reported.

In most cases, this is due to prohibitively high computational cost, or dissipative dis-

cretizations that limit the applicability of such methods to classical turbulence modeling

strategies. Further advancements in this field can be achieved by coupling state-of-the-

art tools to model turbulence and transition (i.e. large-eddy simulations (LES) or hybrid

formulations) with cost/efficient numerical methods applicable to problems with large

boundary motions and deformations. Example applications of such a tool include a va-

riety of low and moderate Reynolds number turbulent flow problems from engineering,

biology, and medicine, where fluid/structure interactions are central to the dynamics of

the flow.

In the present paper we present a non-boundary conforming method that is applicable

to LES of fluid-structure interaction problems. In such case the grid does not need

to conform to a complex moving body, eliminating the tedious grid regeneration or

deformation procedure required in classical boundary-conforming approaches, and at

the same time allowing the adoption of highly efficient, energy conserving, Cartesian

solvers. The boundary motion which is strongly coupled to the fluid flow, can be due

to linear-elastic and large-angle/large displacement rigid-body motions. The overall
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methodology including the fluid solver, the structural model and their coupling will be

discussed briefly in the next section. Then some preliminary results on simple two-

dimensional configurations and fully three-dimensional turbulent flows will be given to

demonstrate the accuracy and range of applicability of the method, respectively.

2 Methodology

In LES, the resolved, large-scale, velocity, and pressure fields can be obtained by directly

solving the filtered Navier-Stokes equations, where scales smaller than the grid size will

be modeled. In the present implementation a top-hat filter in physical space is implicitly

applied by the finite-difference operators. The resulting subgrid scale (SGS) stresses

are modeled using the Lagrangian, dynamic, eddy-viscosity model [2]. The equations

governing the evolution of the large scales are solved on a fixed Cartesian grid that

covers the entire computational domain, ignoring the presence of complex immersed

bodies. A fractional-step method is used for this purpose, where all terms are advanced

in time using an explicit third-order Runge-Kutta scheme. All spatial derivatives are

approximated with second order central differences on a staggered grid.

Boundary conditions on a complex immersed structure, which in general is not

aligned with the grid, are enforced using a ’direct-forcing’ scheme that practically recon-

structs the solution in the vicinity of the body according to the target boundary values.

An example of an immersed boundary identified by a series of material-fixed interfacial

markers whose location is defined in the reference configuration of the solid, is shown in

Fig. 1. This information is used to identify the Eulerian grid nodes that are involved in
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Figure 1: Schematic of a solid body immersed in a Cartesian grid. (a) Reconstruction
of the velocity field near the interface; (b) Reconstruction of the traction forces on the
body. Dashed line denotes the normal the boundary.

the solution reconstruction, which is performed ”around” the points in the fluid phase

closest to the solid boundary (see Fig 1a). An advantage of this choice is that it sim-

plifies the treatment for the points that emerge from the solid as the boundary moves

through the fixed grid. Details on the overall methodology can be found in [1].

In the reconstruction procedure described above it was assumed that the local bound-

ary velocity is known. This velocity, however, has to be computed from the solid struc-

ture that can undergo both linear-elastic and large-angle/large-displacement rigid body

motions. In order to describe the dynamics of the body, the state of the structure and

the loads time-change are tracked. This tracking process necessarily involves a kinematic

description with respect to a reference state. In the present study the corotational (CR)

formulation is used [3]. A linear finite-element model of the structure is used to predict

the elastic deformations. The models are coupled in such a way that the structural

and hydrodynamic grids can be chosen arbitrarily. The deformation of the structure is

expressed as an expansion in terms of the linear free-vibration modes obtained from the
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finite-element model. The time-dependent coefficients in the expansion of the deflection

are the generalized coordinates of the complete dynamic system.

A strong coupling scheme is adopted, where the fluid and the structure are treated

as elements of a single dynamical system, and all of the governing equations are inte-

grated simultaneously, and interactively in the time-domain. There is a fundamental

complication related to the time-domain approach: to predict the hydrodynamic loads

one must know the motion of the structure, and to predict the motion of the structure

one must know the hydrodynamic loads. To overcome this complication, an iterative

scheme that accounts for the interaction between the hydrodynamic loads and the mo-

tion of the structure was developed. The procedure is based on Hamming’s, fourth-order,

predictor-corrector method. Details can be found in [4, 5].

3 Results

3.1 Vortex-induced vibrations for a circular cylinder

As a demonstration of the accuracy and robustness of the proposed method, vortex-

induced vibrations (VIV) for a circular cylinder are simulated. The equation of motion

for VIV of a circular cylinder oscillating in X and Y directions modeled by a spring-

damper-mass system is:

[m]ẍ(t) + [c]ẋ(t) + [k]x(t) = F(x, ẋ, ẍ; t), (1)
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where [m] is the mass matrix, [c] is the damping matrix, and [k] is the stiffness matrix for

the structure. F is the fluid force, and x(t) = X0(t)i + Y0(t)j, with X0(t) and Y0(t) the

displacements of the center of mass of the cylinder in the x and y directions, respectively.

Two different cases were considered with one- and two-degrees-of-freedom respec-

tively. The Reynolds number, Re = U∞D/ν = 200 (U∞ the freestream velocity, D the

diameter of the cylinder, and ν the kinematic viscosity of the fluid) for both cases. The

computational domain is a rectangular box, and the cylinder center was initially located

at (0, 0). A Cartesian grid of 640 × 480 grid points in x and y directions is used with

approximately uniform cells of size 0.01D2 in the vicinity of the cylinder.

For the flow in the first case (the cylinder is allowed to vibrate in the transverse

direction), the Skop-Griffin parameter SG = 2π3S2(m∗ζ) = 7.460×10−3 (S the Strouhal

number of the fixed cylinder, m∗ the mass ratio, and ζ the damping ratio). Our results

are in very good agreement with results in the literature. Using for example the empirical

equation by Sarpkaya [7], A∗MAX = B/(C + S2
G)

0.5
, (where B = 0.385 and C = 0.120),

one can obtain A∗MAX = 1.111 for the above parametric space, while our simulation

predicts A∗MAX = 1.118, which is in good agreement.

More detailed results are shown for the problem with two-degrees-of-freedom (the

cylinder can respond to both the transverse and streamwise forces). Fig.2(a) shows the

vortex pattern: the vortices shed from the cylinder develop into two parallel rows of

vortices with opposite sign. We observe similar vortex shedding pattern for the one

degree-of-freedom case above, but this is very different from the Karman vortex street

in the wake of fixed circular cylinder, which presents vortices with alternate signs in one
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row behind the cylinder. In Fig.2(b) the time histories of drag and lift coefficients are

shown. Since the simulation is started from the steady solution of the fixed cylinder

case, the flow field develops into steady state with almost constant amplitudes of CD

and CL rapidly after a short transition period. Fig.2(c) shows the X − Y phase plot,

where the red line identifies the steady state. A symmetric trajectory is obtained at the

steady state. Here the peak amplitude is A∗MAX = 1.294, which is larger than that of

the one-degree-of-freedom case.

3.2 Turbulent flow over a traveling wavy wall

In this section LES of turbulent flow over a flexible wavy wall undergoing transverse

motion in a form of streamwise traveling wave is presented. The immersed boundary in

this case no longer belongs to a moving rigid body, but it has a non-uniform prescribed

velocity varying with time. Nevertheless, given the availability of accurate DNS data

in the literature [6], we can use it to test the accuracy and efficiency of the proposed

algorithm in turbulent flows. The parametric space and computational box in these LES

are the same as in the reference DNS by Shen et al. [6], where the location of the wall

boundary as a function of time is given by, yw(t) = a sin k(x − ct) (a is the magnitude

of the oscillation, k = 2π/λ is the wavenumber, λ is the wavelength, and c is the phase

speed of the traveling wave).

A grid of 288 × 88 × 64 (streamwise, vertical, and spanwise direction, respectively)

is used here for all the simulations. The grid is uniform in the streamwise and span-

wise homogeneous directions, and is stretched in the vertical direction. In Fig. 3 the
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instantaneous vortical structures visualized using isosurfaces of the second invariant of

the velocity gradient tensor, Q, are shown for c/U = 0.0 and c/U = 0.4 (c/U is the ratio

of the wave speed to the freestream velocity). It can be seen that the strong streamwise

vortices that are characteristic of stationary wavy walls (c/U = 0) are suppressed as

c/U increased from 0.0 to 0.4. Similar behavior has been observed in the reference DNS

[6]. Quantitative comparisons are shown in Fig. 4, where the variations of Ff and Fp

as functions of the phase speed of the traveling wavy wall, c/U , are shown (Ff is the

total friction force, FP is total pressure force on the wall in the streamwise direction,

respectively). Here again our data are in good agreement with the reference simulation

[6].
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(a)

(b) (c)

Figure 2: Vortex-induced vibrations of an elastic circular cylinder: (a) Vortex pattern;
(b) Force coefficients and displacement versus time; (c) X − Y phase plot.
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(a) (b)

Figure 3: Turbulent flow over a traveling wavy wall. Instantaneous vortical structures
colored by streamwise vorticity. (a) c/U = 0.0 and (b) c/U = 0.4.

Figure 4: Variation of the force acting on the traveling wavy wall.
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