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ABSTRACT
In the present paper a computational algorithm suitable for

large-eddy simulations of fluid/structure problems that are com-
monly encountered in biological flows is presented. It is based
on a mixed Eurelian-Lagrangian formulation, where the govern-
ing equations are solved on a fixed grid, which is not aligned
with the body surface, and the non-slip conditions are enforced
via local reconstructions of the solution near the solid interface.
With this strategy we can compute the flow around complex sta-
tionary/moving boundaries and at the same time maintain the
efficiency and optimal conservation properties of the underlying
Cartesian solver. A variety of examples, that establish the accu-
racy and range of applicability of the method are included.

INTRODUCTION
Today, due to the impressive advancements in high perfor-

rmace parallel computing the large-eddy simulation (LES) ap-
proach has emerged as valuable tool for turbulence research and
has contributed invaluable information on the structure and dy-
namics of a variety of flows which are of engineering interest.
There are, however, applications from biology and physiology
where the use of LES has received considerably less attention as
a result of exceedingly complex fluid/structure interactions that
dominate the dynamics of these flows. Characteristic examples
include the flow of blood in the heart or around medical implants,
insect locomotion and bird flight. Massive computations using

∗Address all correspondence to this author.

LES can contribute to a new fundamental understanding of the
dynamics of such flows and help bring to fruition novel devices.

From scaling considerations of the required spatial and tem-
poral resolution, LES of such flows are well within reach of to-
day’s supercomputers. On the other hand, these class of prob-
lems introduce new challenges to high-fidelity numerical meth-
ods since the flow is highly unsteady and involves moving and/or
deforming boundaries composed of anisotropic non-linear mate-
rials. Boundary conforming methods that are traditionally em-
ployed in complex geometrical configurations have been suc-
cessfully extended to problems involving moving boundaries.
While such methods have been demonstrated to be very effec-
tive in creeping and low Reynolds number problems (see for ex-
ample [1, 2]), little work has been completed for moderate/high
Reynolds number flows because of the associated computational
cost and resolution constraints [3, 4]. Considering work that has
been completed for turbulent flows, most of the developments
have been done in the framework of the Reynolds Averaged
Navier Stokes (RANS) approach (i.e. [5,6]). These schemes typ-
ically employ stable, dissipative discretizations, making their use
in LES problematic.

An attractive alternative, which can be a cost/effective strat-
egy in a variety of biological flows, are non-boundary conform-
ing methods. In such case the equations governing the fluid flow
are solved on a fixed Cartesian grid. The effect of a stationary
or moving boundary, which in this case does not coincide with
the grid, is introduced through proper treatment of the solution
variables at the cells in the vicinity of the boundary. An advan-
tage of this type of methods is that the need for grid regeneration
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or deformation is eliminated, and highly efficient solvers can be
used with minimal changes. In terms of the imposition of bound-
ary conditions there are two broad categories of methods that are
usually adopted:Cartesianor cut-cell methods andimmersed
boundarymethods.

In Cartesianmethods a solid boundary is tracked as a sharp
interface and the grid cells at the body interface are modified ac-
cording to their intersections with the underlying Cartesian grid.
Using proper interpolation strategies the flow variables on the
modified cells can be computed according to the boundary con-
ditions on the body.Cartesianmethods allow for a clear dis-
tinction between the solid and the fluid by practically generating
a boundary-fitted grid around the body. Successful applications
of such methods for a variety of flow problems can be found
in [7, 8]. However, due the variaty of possible intersections be-
tween the grid and the boundary a large number of ’interface-
cells’ is generated leading to an equally large number of ’spe-
cial treatments’. Also in complex configurations the unavoidable
generation of irregularly shaped cells with very small size can
have an adverse impact of the conservation and stability proper-
ties of the solver. Recently Yeet al. [9] suggested a cell merging
scheme to address this problem. This formulation was also ex-
tended to treat moving boundaries with good results for a variety
of two-dimensional problems [10]. The extention of the method-
ology in complex three-dimensional configurations remains to be
investigated.

In immersed boundaryformulations the governing equations
are discretized on a fixed Cartesian grid, but in this case the ef-
fect of a stationary or moving boundary is introduced through
an external force field. The method has been introduced by Pe-
skin [11] in the beginning of the 70s to study blood flow in the
heart [12,13]. In these computations the motion of the boundary
was determined by the fluid itself, and vice-verca. The vascular
boundary was modeled as a set of elements linked by springs, and
a Lagrangian coordinate system was attached to track their loca-
tion in space. The tracking information was then used to compute
the proper structure of the external force field that was introduced
to the underline Eulerian grid on which the governing equation
for the fluid flow are solved. A disadvantage of the above formu-
lation is the need to distribute the forcing over 3−4 grid nodes
(usually through a discrete delta function), which unavoidably
introduces some blurring between the fluid and the solid. This
feature increases substantially the resolution requirements, and
appears to be a major obstacle in the extention of the method
to LES, where the proper representation of the thin shear layers
near a solid body is crucial for the accuracy of the computations.

To overcame this limitation Mohd-Yusof [14] and Fadlunet
al. [15] proposed a methodology where the forcing function is
considered in the framework of the discretized equations of mo-
tion. This formulation introduces a set of discrete body-forces
at the grid nodes nearest to the boundary, which is practically
equivalent to a local reconstruction of the solution based on the

target boundary values. To this respect the method can be viewed
as a hybrid Cartesian/Immersed boundary formulation since it
shares features with both approaches. The method has been
successfully applied to a variety of problems including large-
eddy simulation (LES) of turbulent flow inside a motored IC pis-
ton/cylinder assembly [15].

Central to the accuracy of the above formulation is the way
the solution is reconstructed near the boundary. Fadlunet al.[15]
suggested a simple one-dimensional scheme, where the solu-
tion is reconstructed along an arbitrary grid line. The method is
straightforward, second order accurate and works well for bodies
that are largely aligned with the grid lines. In cases of complex
bodies the choice of the reconstruction direction at several points
in the flow field can be arbitrary. Multidimensional schemes
can remove this limitation. Kimet al. [16] suggested a hybrid
scheme, which uses a bilinear reconstruction procedure that is
however, reduced to a one-dimensional linear one, when there
are no available points in the vicinity of the boundary to support
the 2D stencil. Balaras [17] introduced a more general scheme
which is applicable to complex boundaries without special treat-
ments, since the reconstruction is always performed at the well
defined line normal to the interface. The scheme was tested in
a variety of laminar and turbulent flows with very good results.
In the present paper an extention of the work in [17] to mov-
ing boundaries is presented. Examples of laminar and turbulent
flows are included to establish the accuracy and range of appli-
cability of the method.

NUMERICAL METHOD
Basic Solver

In LES, the resolved, large-scale, velocity and pressure
fields can be obtained from direct solution of the filtered Navier-
Stokes equations, where scales smaller than the grid size are
modeled. In the present, finite-difference implementation, a
top-hat filter in physical space that is implicitly applied by
the finite-difference operators separates the resolved from un-
resolved scales. The resulting subgrid scale (SGS) stresses are
modeled using the lagrangian dynamic eddy-viscosity model
[18]. Details on the present implementation of the model to-
gether with an evaluation of its accuracy in equilibrium and non-
equilibrium flows, is given in [19].

The equations governing the evolution of the large scales are
solved on an underlying grid (in Cartesian or cylindrical coordi-
nates) that covers the entire computational domain without the
bodies. Integration is done using a fractional-step method, with
an implicit Crank-Nicolson scheme for the viscous terms and
a third-order Runge-Kutta (RK3) explicit scheme for all other
terms. All spatial derivatives are approximated with second or-
der central differences on a staggered grid. The large-band ma-
trix associated to the solution of the Poisson equation is inverted
using direct methods. The above procedure can be summarized
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into the following steps:
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whereûk
i is the intermediate velocity andφ is the pressure cor-

rection. OperatorA represents the terms treated explicitly, andB
the ones treated implicitly.f k

i is the momentum forcing adopted
to enforce proper boundary conditions on immersed boundaries
and will be discussed in the next section.∆t is the time step
and k is the sub-step index (k = 1,3). The RK3 coefficients
are α1 = 8/15, γ1 = 8/15, ρ1 = 0; α2 = 2/15; γ2 = 5/12,
ρ2 =−17/60;α3 = 1/3, γ3 = 3/4, ρ3 =−5/12.

Treatment of Immersed Boundaries
To compute the flow around complex objects which are not

aligned with the grid, we have developed a methodology that
practically reconstructs the solution in the vicinity of the body ac-
cording to the target boundary values [17]. The approach, which
is based on the ideas in [14, 15], allows for a precise imposition
of the boundary conditions without compromising the accuracy
and efficiency of the solver. In particular, the application of ve-
locity boundary conditions on a body immersed in the Cartesian
grid involves the following steps: (a) Identification of the inter-
face between the body and the fluid; (b) Establishment of the
grid/interface relation and identification of the points in the so-
lution variable grid where boundary conditions will be enforced;
(c) Reconstruction of the solution on the above points. For steps
(a) and (b), which are usually referred to as ‘interface tracking’,
a scheme based on algorithms devised for solidification prob-
lems and multiphase flow dynamics [20, 21] is used. With this
approach, an immersed boundary of arbitrary shape is identified
by a series of material-fixed interfacial markers whose location

Figure 1. STAGGERED GRID ARRANGEMENT NEAR THE BODY

FOR THE 2D PROBLEM. GREY AREA DENOTES THE LOCATION OF

THE BODY AT tk−1 AND BLACK AT tk; p;4 ui .

is defined in the reference configuration of the solid. This infor-
mation is then used to identify the Eulerian grid nodes involved
in the reconstruction of the solution near the boundary in a way
that the desired boundary conditions for the fluid are satisfied to
the desired order of accuracy. The reconstruction is performed
‘around’ the points in the fluid phase closest to the solid bound-
ary (all points that have least one neighbor in the solid phase). In
the framework of the present fractional step method the imposi-
tion of boundary conditions on an immersed boundary is equiva-
lent to the addition to equation (1) of a forcing term of the form:
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ûk

i

)
+B

(
uk−1

i

)]
+αk

∂pk−1

∂xi
(5)

whereV̂k
i is the reconstructed intermediate velocity, such that

the desired boundary conditions are satisfied on the immersed
boundary. The details on the tracking scheme and the solution
reconstruction for stationary boundaries can be found in [17].

When the immersed boundary moves, the role of several
computational nodes in the vicinity of the boundary changes.
This is illustrated in Figure 1, where the the boundary moves
from its position at time steptk−1 (grey shadow region) to a
new position at time steptk (black shadow region). Some ve-
locity nodes (hereinafter referred as ‘boundary’ points), which
were central to the reconstruction of the solution, become inte-
rior ‘fluid’ points. In addition, other nodes inside the body (here-
inafter referred as ‘body’ points) at time steptk−1 emerge into
the fluid and become ‘boundary’ points attk. The latter fam-
ily of points does not require any special treatment because the
solution attk would be reconstructed based on known values.
On the other hand, the former family of points introduces prob-
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Figure 2. SKETCH OF COMPUTATIONAL DOMAIN FOR THE CASE

OF THE SPHERE (TOP) AND OSCILLATING CYLINDER (BOTTOM).

lems when computing theRHSof equation (1) attk: all the grid
nodes that were ‘boundary’ points attk−1 would have the correct
value ofuk−1

i (this is the boundary condition that was enforced
at tk−1), but most derivatives ofuk−1

i would be incorrect since
they involve points previously in the interior of the body. To al-
leviate this problem the velocity and pressure at these points is
‘extended’ to the interior of the body at timetk−1, using 2nd order
multidimensional reconstructions [22].

RESULTS
Numerical Examples of Laminar Flows

To verify the accuracy of the proposed methodology, ini-
tially a series of computations of laminar flows, for which de-
tailed numerical and experimental data are available in the liter-
ature, is conducted. Two cases are presented in this section that
involve both stationary and moving immersed boundaries: the
three-dimensional flow around a sphere, and two-dimensional
flow around a cylinder oscillating in a cross flow.

A schematic of the computational domain for the flow
around the sphere is shown in Figure 2. Cylindrical coordi-
nates are used for a more efficient distribution of the grid points.
Computations have been conducted for Reynolds numbers (Re=
UD/ν, whereU is the freestream velocity,D the diameter of the
sphere) ranging from 50 to 300. The flow is steady and axisym-
metric for Reynolds numbers up to 200, while for the highest
Reynolds number (Re= 300) the flow is unsteady and is domi-
nated by vortex shedding. The size of the computational box in

the streamwise direction is 30D with the sphere located in the
middle, and 15D in the radial direction. To investigate the influ-
ence of grid resolution on the results three different grids have
been considered for the low Reynolds number cases (Re= 50 to
200). Grid 1 involves 100×40×40 computational points in the
streamwise, radial and azimuthal directions respectively. In the
other two cases the grid is refined in the streamwise and radial
directions (Grid 2: 200× 40× 80 and Grid 3: 400× 40× 160
respectively). All three grids are stretched in the streamwise and
radial directions to cluster points near the surface of the sphere.
The resulting average grid spacing near the sphere for the three
different resolutions is approximately 0.1D, 0.05D and 0.025D
respectively. The computations forRe= 300 case are performed
on single refined grid involving 420×64×112 nodes. With this
resolution approximately 10 grid points are located in the bound-
ary layers near the stagnation point. In all cases a uniform veloc-
ity field is specified at the inflow plane. A convective bound-
ary condition is used at the outflow boundary [23], and radiative
boundary conditions are applied at the freestream boundary.

Table 1 shows the present results in comparison with the
experimental results in [24], and the well resolved simulations by
Johnson and Patel [25] where body-fitted grids are used. For all
Reynolds numbers and grid resolutions the main features of the
flow are properly captured. The drag coefficient on the coarsest
grid, is a little higher (approximately 8%) in comparison with
the reference experimental and numerical data. As the grid is
refined, however, the agreement is very good. The error in drag
coefficient, which is computed using the experimental results in
[24] as the reference values, as a function of grid spacing near the
sphere is shown in Figure 3. It can be seen that the error reduces
with a second order slope, which is consistent with the order of
accuracy of the method.

A more challenging test for the present methodology is the
case atRe= 300, where the flow becomes unsteady and the wake
is dominated by periodic vortex shedding. The vortical struc-
tures in the wake are shown in Figure 4, where iso-surfaces of
the second invariant of the velocity gradient tensor (or ’Q’ crite-
rion [26]) are used for their visualization. Hairpin like vortices
originating from the surface of the sphere can be observed, with

Table 1. PREDICTION OF CD FOR THE CASE OF THE SPHERE

Re 50 100 150 200

Grid 1 1.707 1.229 1.045 0.945

Grid 2 1.609 1.118 0.919 0.807

Grid 3 1.586 1.095 0.894 0.776

Experiment [24] 1.574 1.087 0.889 0.776

Ref. simulation [25] 1.575 1.100 0.900 0.775
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Figure 3. ERROR IN THE DRAG COEFFICIENT FOR THE FLOW

AROUND THE SPHERE AS A FUNCTION OF GRID RESOLUTION.

new vortical structures developing around their legs as they are
convected downstream. This behavior is nearly the same as the
one shown in [25] indicating that the present method properly
captures the three-dimensional vorticity field. The values of the
drag and lift coefficient are also in excellent agreement with the
reference data. In particular, the predicted drag and lift coeffi-
cients areCD = 0.655 andCL = 0.064 respectively, which are
within 1% to the values reported in [24] and [25]).

To evaluate the accuracy of the method for the case of mov-
ing boundaries the flow around a cylinder oscillating transver-
sally in a free-stream is computed. All flow parameters are cho-
sen to replicate the conditions in the simulations reported in [27],
where very fine body-fitted grids are used. The Reynolds num-
ber (Re= UD/ν, whereU is the freestream velocity andD the
cylinder diameter) is 185. Other important parameters are the
oscillation frequencyfe and amplitudeAe. In all computations
the motion of the cylinder is given by a simple harmonic func-
tion xc = Aesin(2π fet), with Ae = 0.2. A variety of frequencies

Figure 4. VORTICAL STRUCTURES IN THE WAKE OF THE SPHERE

FOR Re= 300. ISO-SURFACES OF Q = 0.001ARE SHOWN.

Figure 5. TEMPORAL EVOLUTION OF THE LIFT AND DRAG COEF-

FICIENTS FOR THE CASE OF THE CYLINDER OSCILLATING IN A

CROSS FLOW. (a) fe/ fo = 1.0; (b) fe/ fo = 1.2. CD; CL

is considered ranging fromfe/ fo = 0.8 to fe/ fo = 1.2, where
fo is the natural shedding frequency of the stationary cylinder at
the same Reynolds number. The size of the computational box is
50D×30D in the streamwise and crossstream directions respec-
tively, with the cylinder located 20D from the inflow plane (Fig-
ure 2). As for the case of the sphere a uniform velocity field is
specified at the inflow plane, and convective and radiative bound-
ary conditions are used at the outflow and freestream boundaries
respectively. All computations are performed on a non-uniform
grid involving 300×300 points. The average grid spacing near
the cylinder surface is of the order of 0.01D.

The temporal variation of the lift and drag coefficients
changes substantially when the excitation frequency is varied
near the natural shedding frequencyfo. An example is shown
in Figure 5 for fe/ fo = 1.0 and fe/ fo = 1.2. In the former case
a fairly regular behavior of the lift and drag coefficients can be
observed once vortex shedding is established. In the latter the
appearance of a higher harmonic is apparent. This behavior has
also been observed in previous experimental and numerical stud-
ies and can be attributed to the change in sign of the energy trans-
fer between the fluid and the cylinder. In Figure 6 the mean value
of the drag coefficient,CD, the root mean square of the drag
coefficient,CDrms, and the root mean square of the lift coeffi-
cient,CLrms, are shown as a function of the excitation frequency
fe/ fo. The mean value ofCD has a peak atfe/ fo = 1.0, as ex-
pected, and then decreases arefe/ fo increases.CLrms, on the
other hand, peaks atfe/ fo = 1.1 where the vortex switching oc-
curs. These results are also in very good quantitative agreement
with the corresponding values reported in [27]. In Figure 7 in-
stantaneous spanwise vorticity isolines in four different phases
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Figure 6. VARIATION OF: ◦CD;4CDrms; CLrmsFOR THE CASE

OF THE CYLINDER OSCILLATING IN A CROSS FLOW AS A FUNC-

TION OF fe/ fo.

during the harmonic oscillation are shown forfe/ fo = 1.0. Dur-
ing the upward motion of the cylinder vorticity is formed at the
base, whose sign is opposite to the one in the upper shear layer.
Their interaction results in a decrease of the vorticity available
for roll-up in the wake.

Pulsatile Flow in a Model of Arterial Stenosis
A more challenging test for the accuracy and efficiency of

the present method is the computation of transitional flow in a
model of arterial stenosis. Initially a planar model is consid-
ered. The constriction is generated by placing two approximately
semi-circular sections on the top and bottom walls of a plane
channel, resulting in area reduction of 50% (see Figure 8). This
choice reduces substantially the cost compared to the axisym-
metric case and facilitates a timely examination of all different
parameters that affect the dynamics of the flow. Nevertheless,
the fundamental dynamics of the flow are similar to the ones ob-
served in axisymmetric experiments reported in the literature.

A schematic of the computational domain is given in Fig-
ure 8. The throat of the stenosis and the outflow plane are located
10H and 30H from inflow plane respectively (H is the channel
hight). The spanwise domain size is 3H, which was found suf-
ficient for the two-point correlations to go to zero. The aver-
age Reynolds number during the pulsatile cycle isReb = 1200
(Reb = UbH/ν, whereUb is the average bulk velocity during the
cycle,H is the channel hight, andν is the kinematic viscosity).
During one cycleReb varies almost sinusoidally with a minimum
value of 270 and a maximum of 1500. The corresponding fre-
quency parameter isα ∼ 8. (α = h(ω/ν)1/2, whereh = H/2,

andω is the fundamental pulsatile frequency). The choice of the
geometry and parametric space above, mimics closely the condi-
tions in Particle Image Velocimetry (PIV) experiments that were
conducted in parallel to the present computations for the purpose
of validation of the present method [28]. To establish the grid in-
dependency of the solution, computations with different grid res-
olution in all three coordinate directions involving from 0.5 to 3.0
million points were conducted. It was found the approximately
1.0 million nodes (360× 32× 82 in the streamwise, spanwise
and wall-normal directions respectively) was sufficient for that
purpose. Periodic boundary conditions are used in the spanwise,
homogeneous direction and a convective boundary condition at
the outflow plane. At the inflow plane the PIV, phase-averaged,
velocity profiles from the experimental study are specified as
boundary conditions. Noise with prescribed statistics and spectra
has also been added to mimic the disturbance environment in the
experiments. The phase-averaged statistics in all computations
are extracted over 10 pulsatile cycles. Prior to sampling, 5 cycles
were completed for the flow to became independent of the initial
conditions.

To visualize the basic dynamics of the flow in the vicinity
of the stenosis, spatially and phase-averaged spanwise vorticity
isolines are shown in Figure 9 at three characteristic times during
the pulsatile cycle. During the initial stages of the accelerating
part of the cycle a jet is formed as the flow goes through the
constriction (see Figure 9a). The flow at this stage is fairly sym-
metric. At a letter stage of the same part of the cycle the jet be-
comes unstable and the shear layers in the proximal post-stenotic
area break down generating large spanwise coherent structures
(see Figure 9b). These structures are convected downstream in-
teracting with the boundary layers at the walls triggering tran-
sition to turbulence. During the decelerating part of the cycle,

Figure 7. SPANWISE VORTICITY ISOLINES FOR fe/ fo = 1.0
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Figure 8. SCHEMATIC OF THE COMPUTATIONAL DOMAIN FOR THE

CASE OF FLOW IN A MODEL OF ARTERIAL STENOSIS.

Figure 9. PHASE-AVERAGED SPANWISE VORTICITY DISTRIBU-

TION. (a) T = 250o; (b) T = 320o; (c) T = 100o. THE ACCELER-

ATING PART OF THE CYCLE IS FROM T = 180o TO T = 360o AND

THE DECELERATING PART IS FROM T = 0o TO T = 180o.

turbulence is enhanced and turbulent boundary layers appear just
downstream of the reattachment point. At the same time, very
close to the throat of the stenosis the shear layer attaches to one
side of the channel (see Figure 9c). This behavior has also been
observed in the experiments. In Figures 10 and 11 phase-average
profiles of the mean streamwise velocity and velocity fluctua-
tions are shown forT = 270o andT = 350o respectively. Both
time instances are during the acceleration phase with the latter
corresponding to a time just after the breakdown of the shear
layer. Three stations in the proximal downstream area are shown:
x/H = 2, x/H = 4 andx/H = 6 from the throat of the stenosis.
The agreement with the corresponding experimental data is very
good.

Figure 10. PHASE-AVERAGED STREAMWISE VELOCITY STATIS-

TICS AT T = 270o. simulation; ◦ experiment [28]. (a) < u>; (b)

urms.

Figure 11. PHASE-AVERAGED STREAMWISE VELOCITY STATIS-

TICS AT T = 350o. simulation; ◦ experiment [28]. (a) < u>; (b)

urms.

CONCLUSIONS
In the present paper a methodology to perform LES around

complex moving boundaries on fixed grids is presented. The
method is based on earlier work reported in [17], and introduces a
‘field extention’ approach to address problems encountered dur-
ing the motion of immersed boundaries. Validation is performed
for the cases of the flow around a sphere, a cylinder oscillating
in a cross-flow and pulsatile flow in a model of arterial steno-
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sis. In all cases the agreement with reference experimental and
numerical results is very good.
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