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ABSTRACT 
A sharp interface cavitation modeling methodology is 

presented. A simplified Rayleigh-Plesset equation is used to 

obtain the phase change rate from the local pressure. The phase 

change rate is expressed as mass flux jump conditions. The 

phase interface is tracked using a second-order volume-of-fluid 

method with a constructed level set function. The interface 

normal velocity jump is extended into the flow field using a fast 

marching method. A ghost fluid method is used to prevent 

difficulties computing high-order derivatives near the interface. 

Two separate intermediate velocity fields from the momentum 

equation are solved considering the velocity jump conditions. 

Some preliminary results will be demonstrated to show the 

promise of the present approach. 

INTRODUCTION 
Cavitation occurs when a liquid, such as water, changes 

state to a vapor due to a reduction in pressure. For example the 

flow around a lifting surface such as a hydrofoil or propeller 

blade causes a low pressure on the suction side. 

Cavitation reduces the lift produced by these surfaces and 

the collapse of cavitation bubbles may cause physical damage 

to the surface.  When cavitation cannot be prevented, it is 

important to be able to accurately model the effects of 

cavitation. 

Cavitation modeling consists of two parts: the modeling of 

multiphase flow and the modeling of the mass transfer between 

the phases.  In this work, a coupled level set and volume-of-

fluid sharp interface method is used for the multiphase model.  

A new method is developed for modeling the mass transfer with 

a sharp interface model.  The new method is implemented in 

CFDShip-IOWA Version 6 (Yang and Stern, 2009). 

Previous cavitation modeling efforts include both potential 

flow models and models applicable to finite volume and finite 

difference methods. 

This paper reviews the physics of cavitation and past 

simulation efforts.  Then, the details of the model used in this 

paper are presented, followed by examples with a single bubble 

and a hydrofoil with cavitation.  A parametric investigation of 

the effect of the vapor pressure and constants for evaporation 

and condensation was made to determine the effects of the 

parameters.  The effect of the vapor viscosity was also 

investigated. 

NOMENCLATURE 
c chord length of foil 

Cp pressure coefficient, p/u
2 

F volume-of-fluid scalar 

g gravity vector 

𝑚̇ mass flux between phases 

n normal vector 

p pressure 

pvap vapor pressure at ambient temperature 

R radius 

t time 

u velocity vector 

U interface velocity vector 

x streamwise direction 

y cross-stream direction 

 density 

 

Subscripts 

f fluid 

l liquid 

N normal 

v vapor 

BACKGROUND 
 Cavitation is the term for the change of state of a 

liquid to a vapor caused by a low pressure region within a flow 

field.  In contrast, the term boiling is used when a fluid changes 

from liquid to vapor due to a high temperature.  Both are 

similar phenomena and have the same physical mechanisms—
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in both cases the liquid reaches a combination of pressure and 

temperature that dictate a change of state to vapor.  In 

cavitation, the local pressure drops below the vapor pressure at 

the ambient temperature.  In boiling, the vapor pressure at the 

local temperature rises above the ambient pressure.  Therefore, 

in the case of boiling, the surrounding heat flux is critical while 

the local pressure is relatively unimportant, whereas in 

cavitation the heat flux is relatively unimportant but the 

pressure field is critical. 

Potential flow cavitation models have been successfully 

applied to propellers by Lee (1979) and Kerwin et al. (1987).  

These models use lifting surface theory or potential panels to 

represent the blade surface.  Cavities are modeled with sources 

or additional panels. 

Many researchers have explored cavitation modeling with 

finite volume and finite difference codes using homogenous 

mixture models.  Phase change models for use with the mixture 

model were developed by Merkle et al. (1998) and Kunz, et al. 

(1999) and are still commonly used.  A slightly more recent 

model by Singhal et al. (2002) is based on similar principles 

and adds the ability to model non-condensable gas within the 

bubbles.   Recent computations by Kim et al. (2008, 2010a, 

2010b) and Bensow et al. (2008) using these models, or similar 

ones, have shown good comparison with hydrofoil and 

propeller experiments. 

In contrast to homogenous mixture models, sharp interface 

models subdivide computational cells into a liquid part and a 

vapor part.  This reduces diffusion due to advection. 

Sharp interface models for phase change have been 

demonstrated for the case of film boiling by Son and Dhir 

(2007) and Gibou et al. (2007).  The research described in this 

paper applies related techniques to the problem of cavitation.  

The application of the volume source and interface velocity 

jump is similar.  However, cavitation may be a more difficult 

problem than boiling because of the tight coupling between the 

pressure solution and the phase change rate which is not present 

in boiling problems. 

MATHEMATICAL MODEL 

Navier-Stokes equations 
The incompressible viscous flow of the liquid and vapor 

are governed by the Navier-Stokes equations 

𝛻𝒖 = 0 (1) 

𝜕𝒖

𝜕𝑡
+ 𝒖 ∙ 𝛻𝒖 =

1

𝜌
 𝛻 ∙ (−𝑝𝑰 + 𝑻) + 𝒈 

(2) 

where I is the identity matrix and 

𝑻 = 2𝜇𝑺 (3) 

where  is the viscosity of the fluid and 

𝑺 =
1

2
[𝛻𝒖 + (𝛻𝒖)𝑻] 

(4) 

Jump Conditions 
The well-known Rankine-Hugoniot jump conditions are 

required to satisfy mass and momentum conservation at the 

interface. 

[𝜌𝑓 (𝒖𝑓𝑁
− 𝑼𝑁)] = 0 (5) 

[𝜌𝑓 (𝒖𝑓𝑁
− 𝑼𝑁)

2

+ 𝑝] = 0 
(6) 

where 𝒖𝑓𝑁
 and UN are the normal components of the fluid and 

interface velocities, respectively, and [X] denotes the jump in 

quantity X across the interface.  The mass flux between phases 

is 

𝑚̇ = 𝜌𝑙(𝑼𝑁 − 𝒖𝑙𝑁) = 𝜌𝑣(𝑼𝑁 − 𝒖𝑣𝑁) (7) 

This also satisfies the mass conservation requirement that the 

mass flux from one phase is balanced by the mass flux to the 

other phase 

[𝑚̇] = 0 (8) 

Interface Tracking 
The interface is tracked with the sharp volume-of-fluid 

(VOF) method with a constructed distance function as 

described by Wang et al. (2012).  The method is modified to 

use the interface velocity described in the preceding section.   

The interface represents the boundary between liquid and 

vapor. However particles cross the interface when changing 

phases.  This model accounts for the change in the location of 

the interface as a thin slice of fluid at the interface is converted 

from one phase to the other. 

The VOF advection equation without phase change is 

𝜕𝐹

𝜕𝑡
+ 𝒖𝛻𝐹 = 0 

(9) 

When phase change is included, the VOF is advected by the 

interface velocity, U, so that 

𝜕𝐹

𝜕𝑡
+ 𝑼𝛻𝐹 = 0 

(10) 

With mass transfer between phases, the interface velocity 

is the combination of the fluid velocity, uf, and the relative 

velocity due to phase change such that 

𝑼 = 𝒖𝑓 +
𝑚̇𝒏

𝜌𝑓
 

(11) 

The effect of phase change can be visualized with the 

example of water evaporating from a glass.  The liquid velocity 

is zero.  But, as molecules of liquid become vapor at the 

surface, the interface moves downward with the velocity 

described by Equation 11. 
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The Mass Flux Model 
Phase change models for cavitation can be divided into 

three broad categories:  barotropic models, equilibrium models, 

and Rayleigh-Plesset based models.  Barotropic models simply 

define all fluid above vapor pressure as liquid and all fluid 

below vapor pressure as vapor.  Equilibrium models seek to 

accurately compute the phase change rate determined by the 

heat transfer from liquid to vapor, but require very small time 

steps due to the high rate of conduction through liquid water 

and the small gradient near the interface.  Rayleigh-Plesset 

models simplify the physics by utilizing a simplification of the 

Rayleigh-Plesset equation for bubble dynamics; this has the 

potential to capture the most significant aspects of the physics 

without requiring exceedingly small time steps.  The models 

commonly in use with the homogenous mixture model are 

derived from the Rayleigh-Plesset equation. 

Franc and Michel (2004) showed that the rate of heat 

transfer in water is sufficiently high that it can be neglected for 

most practical problems. The Rayleigh-Plesset equation 

describes the evolution of a three-dimensional, spherical bubble 

filled with saturated vapor and subject to uniform pressure 

variations. 

 𝜌𝑙 (𝑅𝑅̈ +
3

2
(𝑅2)̇ )

= 𝑝𝑣𝑎𝑝 − 𝑝∞ + 𝑝𝑔0 (
𝑅0
𝑅
)
3𝛾

−
2𝑆

𝑅
− 4𝜇

𝑅̇

𝑅
 

(12) 

where pg0 is the initial partial pressure of non-condensable 

gasses, R0 is the initial radius of the bubble, S is the surface 

tension, and  is the ratio of the gas heat capacities.  The third 

term on the right hand side represents the effect of the non-

condensable gasses.  The last two terms on the right represent 

the effects of surface tension and viscosity, respectively.  The 

surface tension can be neglected for all but the smallest bubbles 

and the viscous effects can be neglected for the Reynolds 

numbers of interest in ship flows. 

If we note that the time-varying term on the left of 

Equation 12 can be expressed 

𝑅𝑅̈ +
3

2
𝑅2̇ =

1

2𝑅̇𝑅2
𝑑(𝑅̇2𝑅3)

𝑑𝑡
 

(13) 

Then, dropping the non-condensable gas, surface tension, 

and viscosity terms and integrating with respect to time yields 

𝑑𝑅

𝑑𝑡
= √

2

3

(𝑝∞ − 𝑝𝑣𝑎𝑝)

𝜌𝑙
(1 − (

𝑅0
𝑅
)
3

) 
(14) 

The cube of the initial radius, R0, represents the volume of 

non-condensable gasses present in the nuclei before phase 

change caused the bubble to grow.  Hence, the ratio of the 

initial radius to the instantaneous radius of a cavitation bubble 

will be small once cavitation growth begins until just before 

bubble collapse, both below the expected resolution of the flow 

solver.  Therefore, the cube of the ratio can be neglected, 

leaving  

𝑑𝑅

𝑑𝑡
= √

2

3

(𝑝∞ − 𝑝𝑣𝑎𝑝)

𝜌𝑙
 

(15) 

This equation describing the time rate of change of a 

bubble radius subject to a pressure field is the foundation of 

several mass-transfer phase-change models where the local 

pressure replaces the far field pressure in the equation above. 

In the volume-of-fluid and level set methods, bubbles must 

be larger than a cell to be tracked. When the interface is 

convected in the volume-of-fluid method, it is modeled as a 

plane in each cell.  If the radius is sufficiently large, then the 

rate of change of the radius with respect to time can be 

approximated by the advancement of the planar interface in the 

direction normal to the interface during a time step.  That is, the 

phase change velocity can be approximated as 

𝑚̇𝒏

𝜌𝑙
= √

2

3

(𝑝 − 𝑝𝑣𝑎𝑝)

𝜌𝑙
 𝒏 

(16) 

so that 

𝑚̇ = √
2

3
𝜌𝑙(𝑝 − 𝑝𝑣𝑎𝑝) 

(17) 

Since the local pressure must be used in place of the far 

field pressure, a constant is added for correlation.  As in models 

by Merkle et al. (1998) and Singhal et al. (2002), different 

constants may be used for evaporation and condensation. 

𝑚̇ =

{
 
 

 
 
𝐶 𝑒√

2

3
𝜌𝑙(𝑝𝑣𝑎𝑝 − 𝑝), 𝑝 < 𝑝𝑣𝑎𝑝

𝐶𝑐√
2

3
𝜌𝑙(𝑝 − 𝑝𝑣𝑎𝑝), 𝑝 ≥ 𝑝𝑣𝑎𝑝

 

(18) 

where Ce and Cc are the evaporation and condensation 

coefficients, respectively. 

NUMERICAL MODEL 

Discretization 
The governing equations are discretized on a non-uniform 

staggered orthogonal curvilinear grid, with the velocity 

components defined at the centers of the cell faces and all other 

variables defined at the cell centers.  A finite difference 

approach is used, with the exception of the pressure Poisson 

equation, where a finite volume approach is used for increased 

stability.  Additional details can be found in Suh et al. (2011). 

The pressure Poisson equation with phase change is 
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𝜕

𝜕𝑥𝑖
𝐺𝑟𝑎𝑑𝑖(𝑝

𝑛+1) =
1

𝛥𝑡
(
𝜕𝑢𝑖

∗

𝜕𝑥𝑖
+ 𝑚̇ (

1

𝜌𝑣
−
1

𝜌𝑙
)) 

(19) 

where the term on the far right represents the volume source 

due to phase change. Gradi(p) is collocated with the velocity 

components and incorporates the jump conditions due to 

surface tension and gravity as described by Yang and Stern 

(2009).  A first-order Euler method is used for time 

advancement for simplicity. 

Volume of Fluid and Level Set 
The VOF-PLIC scheme presented by Gueyffier et al. 

(1999) is employed for the interface reconstruction.  After the 

interface is reconstructed, the VOF fluxes can be calculated and 

the interface is propagated by updating the VOF values in the 

entire computational domain.  The interface is reconstructed on 

the computational domain rather than on the physical domain.  

The interface is advected separately in each coordinate 

direction using an operator splitting strategy. In the first 

fractional step, the normal vector is calculated from the level 

set function of the previous time step; then the intermediate 

level set function is used to calculate the normal vector in the 

second fractional step. Further description of the method can be 

found in Wang et al. (2012). 

The level set function is reinitialized from the VOF using a 

fast marching method (Yang and Stern, 2011).  The level set 

function is used for convenience in determining interface 

distances and normals and computed in conjunction with 

extending the velocity jump at the interface throughout the 

domain for use in the ghost fluid method, described later. 

Velocity Jump 
The velocity jump is treated in an integral fashion, 

consistent with the finite volume approach to the Poisson 

equation.  This is done by considering a flux jump due to the 

phase change which results in a jump in the average velocity at 

cell faces.  It is not necessary for the interface to separate two 

velocity points.  The ratio of the area of the interface in a given 

direction to the mean area of the cell faces in that direction is 

used to modify the expected velocity jump. 

[𝒖] = 𝑚̇ [
1

𝜌
]
𝐴𝑓

𝐴𝑖
 𝒏 

(20) 

where Af is the face area and Ai is the interface area.  The 

interface area is determined from the VOF volume fraction by 

finding the points where the interface intersects the cell edges, 

as described by Wang et al. (2012).  The area is then computed 

by a series of cross-products between the interface edge 

vectors. 

With this method, source terms slowly increase and 

decrease in a cell as the interface moves through the cell.  If a 

cell has a volume fraction between zero and one, then it will 

contain a volume source contributing a flux jump proportional 

to the interface area and normal component in each direction. 

Ghost Fluid Method 
The ghost fluid method was introduced by Fedkiw et al. 

(1999) for multiphase compressible flows without phase change 

and extended by Nguyen et al. (2001) to incompressible flame 

fronts with mass transfer.  The method was employed by Son 

and Dhir (2007) and Gibou et al. (2007) using the level set 

method to compute boiling problems. 

The momentum solver used in this research includes the 

effects of surface tension and the density and viscosity changes 

between the fluid fields (Yang and Stern 2009).  Therefore, the 

ghost fluid method is only applied to the normal velocity jump 

due to phase change.  

To extend the liquid velocity field, the jump in normal 

velocity is removed from cells in the vapor region by applying 

𝒖𝑙 =  𝒖𝑣 − 𝑚̇ [
1

𝜌
] 𝒏 

(21) 

at cells where the volume fraction is equal to zero, therefore all 

vapor.  To determine the value of 𝑚̇ away from the interface, 

the level set fast marching method developed by Yang and 

Stern (2011) has been modified to simultaneously extend the 

value of 𝑚̇ at the interface in the normal direction, following 

the method described by Herrmann (2003). 

The vapor velocity field is extended in a similar fashion.  

The intermediate velocity fields are predicted separately, then 

the two fields are recombined using the phase indicated by the 

level set function. 

Semi-Implicit Phase Change Rate 
For stability, the pressure Poisson equation is modified to 

include the phase change equation semi-implicitly.  To do this, 

the source term is linearized and separated into implicit and 

explicit parts. 

𝑚̇ (
1

𝜌𝑣
−
1

𝜌𝑙
) = 𝑠𝑖𝑔𝑛(𝑝 − 𝑝𝑣𝑎𝑝)𝐸√|𝑝 − 𝑝𝑣𝑎𝑝| (22) 

where E is the constant 

𝐸 = (
1

𝜌𝑣
−
1

𝜌𝑙
)√

2

3
𝜌𝑙  

(23) 

The square root is linearized similar to Kim and Brewton 

(2008): 

𝑠𝑖𝑔𝑛(𝑝 − 𝑝𝑣𝑎𝑝)√|𝑝
𝑛+1 − 𝑝𝑣𝑎𝑝| =

𝑝𝑛+1 − 𝑝𝑣𝑎𝑝

√|𝑝𝑛 − 𝑝𝑣𝑎𝑝|

 

(24) 

Now, the source term can be represented by semi-implicit and 

explicit parts: 

𝑚̇ (
1

𝜌𝑣
−
1

𝜌𝑙
) =

𝐸 𝑝𝑛+1

√|𝑝𝑛 − 𝑝𝑣𝑎𝑝|

−
 𝐸 𝑝𝑣𝑎𝑝

√|𝑝𝑛 − 𝑝𝑣𝑎𝑝|

 

(25) 
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The revised pressure Poisson equation is 

𝜕

𝜕𝑥𝑖
𝐺𝑟𝑎𝑑𝑖(𝑝

𝑛+1) −
𝐸 𝑝𝑛+1

√|𝑝𝑛 − 𝑝𝑣𝑎𝑝|

=
1

𝛥𝑡

(

 
𝜕𝑢𝑖

∗

𝜕𝑥𝑖
−

 𝐸 𝑝𝑣𝑎𝑝

√|𝑝𝑛 − 𝑝𝑣𝑎𝑝|)

  

(26) 

which determines the mass flux between phases simultaneously 

with the solution of the pressure Poisson equation. 

When the pressure and vapor pressure are equal, the 

denominator of both the explicit and semi-implicit terms will be 

zero.  This is consistent with the infinite slope of the phase 

change rate at this point.  To manage this situation, a minimum 

denominator is selected.  A minimum denominator of 0.5 

provides first derivative continuity. 

The contribution of the pressure jump due to momentum 

conservation is much smaller than the volume source.  An 

explicit method has been tested, to evaluate the magnitude of 

the term, but has not been included in these results for 

simplicity. 

VERIFICATION 
To test the implementation of the volume source and jump 

conditions, a simple two-dimensional bubble of radius one is 

computed on a round mesh with a specified volume source 

strength corresponding to 

𝑚̇ =
0.1

𝑅
(
1

𝜌𝑣
−
1

𝜌𝑙
) 

(27) 

The ratio of the density of liquid to the density of vapor is 

1000.  The bubble is expanding with the source strength 

inversely proportional to the bubble radius.  Consequently, the 

velocity field outside of the bubble will be constant in time.  

The outer boundary pressure is fixed at zero, so that the 

pressure near the bubble, where the velocity is greater, must be 

lower. 

For these conditions, the analytical solution of the velocity 

and pressure field is known.  Figure 1 compares the computed 

radial pressure distribution with the analytical solution for a 

point source.  The symbols show the analytical solution while 

the lines show the computed solution for the first 50 time steps.  

In the bubble case, the source is initially at the interface at r=1 

so that the velocity inside the bubble is zero and the pressure is 

constant in space.  As time advances, the radius of the bubble 

increases and the pressure in the bubble increases to match the 

analytical value at the current interface radius. 

To test the semi-implicit phase change computation and 

two dimensions, an expanding bubble with an initial radius of 

one is computed on a square mesh with dimensions of -10 to 10 

in each direction and 512 cells in each direction, with cells 

clustered in way of the bubble.  The far field pressure is zero 

and the vapor pressure is two.  Since the ambient pressure is 

below vapor pressure, the bubble will grow.   

 
Figure 1: Comparison of computed and analytical 

solutions for bubble pressure field. 

Initially, the velocity is zero everywhere.  During the first 

time step, the implicit phase change model allows pressure in 

the bubble to rise almost to vapor pressure, to accelerate liquid 

away from the bubble.  In subsequent time steps, the velocity 

near the bubble increases and the pressure near the bubble is 

reduced, as shown in Figure 2.  The time step size is 0.01; the 

first 20 time steps, 25, 30, and 40 are shown.  The bubble grows 

slowly at this point, and the change in radius from 1.00 to 1.03 

is not clearly visible in the figure. 

 

 
Figure 2: Expanding bubble on a square mesh with 

computed phase change rate. 

Figure 3 shows velocity vectors and pressures for a small 

part of the interface at time step 30.  There are some variations 

in the pressure due to discretization.  The velocity vectors  

outside of the bubble clearly point outward and the vectors 

inside of the bubble are near zero, clearly showing the velocity 

jump produced by the volume source at the interface.  Equation 

11 indicates that the interface is moving into the liquid at a 

slightly higher rate than the liquid is moving outward as a thin 

slice of liquid is converted to a larger volume of vapor to make 

the new outer ring of the expanding bubble. 

 

Time 

Time 
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Figure 3: Velocity vectors and pressure at the 

interface. 

 

RESULTS AND DISCUSSION 
A NACA66 hydrofoil with 2% camber and 9% thickness 

described by Shen and Dimotakis (1989) was computed in two 

dimensions on an O-grid of 256×2048 cells with a radius of 

about 10 chord lengths.  An inlet velocity boundary condition 

was used upstream and a fixed pressure boundary condition 

was used downstream.  Figure 4 shows the geometry and 

Figure 5 shows the mesh near the leading edge.   

 

 
Figure 4: NACA 66 hydrofoil at six-degree angle of 

attack. 

 

 
Figure 5: Grid at leading edge of the foil. 

Figure 6 compares the non-cavitating pressure distribution 

with the experimental measurements at a six-degree angle of 

attack.  Note that the figure shows the negative pressure 

coefficient, so that the pressure on the suction side of the foil 

appears on top.  The far field pressure is zero. 

Figure 7 compares the cavities at pressure coefficients 

of -0.50, -0.45, and -0.40 at the same time step.   As expected 

when the far field pressure is closer to the vapor pressure there 

is more cavitation.  When bubbles are shed downstream, they 

maintain the pressure at the interface at close to vapor pressure 

as they shrink to prevent any pressure increase.  In these 

figures, the coefficient for evaporation is 3.5 and the coefficient 

for condensation is 1.0.  The low pressure “spot” is a bubble 

which has shrunk below the resolution of the level set function. 

Figure 8 shows the evolution of the cavitation at a vapor 

pressure coefficient of -0.50 starting at the time step shown in 

Figure 7.  The cavity sheds bubbles downstream in a repeating 

cycle. 

The evaporation coefficient is important for maintaining the 

position of the cavity near the leading edge of the hydrofoil.  

The leading edge of the cavity will travel downstream if the 

rate of evaporation is insufficient to counteract advection.  

Evaporation constants of three to four were found to be 

sufficient to maintain the position of the leading edge of the 

cavity. 

 

 
Figure 6: Non-cavitating pressure distribution at six-

degree angle of attack. 

The rate of condensation is important for determining the 

length of the cavity, and how long bubbles persist after they are 

shed downstream.  It was found that a lower rate of 

condensation than evaporation was desirable, as in the model 

developed by Singhal (2002).  However, if the rate of 

condensation is too low, the bubbles will be slow to contract 

and travel far downstream.   

Figure 9 compares condensation rate coefficients of 0.1, 

1.0, and 2.0 at a vapor pressure coefficient of -0.50.  The figure 

shows that with a condensation coefficient of 0.1 the shed 

bubbles persist, shrinking very slowly in comparison to the 

higher values.  The large bubble near x/c=0.55 at the lowest 

z

y

-0 .6 -0 .55 -0 .5 -0 .45 -0 .4 -0 .35 -0 .3 -0 .25
0.85

0.90

0.95

1.00

1.05

p

0.130

0.128

0.126

0.124

0.122

0.120

x/c

y
/c

0.0 0.2 0 .4 0.6 0.8 1.0

-0 .1

0.0

0.1

x/c

-C
P

0.0 0.2 0 .4 0.6 0.8 1 .0
-1 .5

-1 .0

-0 .5

0.0

0.5

1.0

1.5

2.0

2.5

Experim ent

C om putation



 7 Copyright © 2013 by ASME 

condensation coefficient eventually travels past the trailing 

edge of the foil. 

The viscosity of the vapor has some effect on the shedding 

of the cavities through its presence in the momentum equation.  

Figure 10 compares results with ratios of vapor dynamic 

viscosities to liquid dynamic viscosities of 0.1 and 0.01 at the 

same time step with a vapor pressure coefficient of -0.50.  At 

room temperature, the ratio of the water vapor viscosity to the 

liquid water viscosity is about 0.01 while the ratio of air 

viscosity to liquid water viscosity is 0.10.  The smaller vapor 

viscosity results in smaller leading edge cavities and more 

frequent shedding. 

CONCLUSIONS 
A sharp interface model for cavitation has been developed.  

The model utilizes a simplification of the Rayleigh-Plesset 

equation to determine the rate of phase change.  This rate is 

computed semi-implicitly as part of the solution of the pressure 

Poisson equation where the phase change rate acts as a volume 

source.  The rate of phase change is used directly to determine 

the velocity of the sharp interface. 

Initial results show that the implementation of the volume 

source and ghost fluid method result in a pressure field that 

matches the analytical value for a specified phase change rate. 

Wetted results with a NACA 66 hydrofoil show that the 

computed wetted pressure distribution is in good agreement 

with the measurements.  Initial parametric results for cavitating 

conditions show the correct physics and much detail at the 

interface.  The importance of selecting the correct coefficients 

for condensation and evaporation is clear.  The coefficients will 

be selected by comparison with experiments.  Future work will 

compare the cavitating computations with experimental 

measurements.  Currently, no subgrid model for bubbles has 

been implemented.  Such a model will be needed to more 

accurately model the creation and destruction of bubbles. 
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Figure 7: Cavitation with vapor pressure coefficients 

of -0.50, -0.45, -0.40 (top to bottom). 
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Figure 8: Evolution of the leading edge cavity with CPvap=-0.50, time advancing a-h
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Figure 9: Varying condensation coefficient 0.1, 1.0, 

2.0 (top to bottom), with CPvap=-0.50. 

 

 

 

 
Figure 10: Effect of vapor dynamic viscosity ratio, 

0.10 (top) and 0.01 (bottom) with CPvap=-0.50. 
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