
Proceedings of the ASME 2012 Fluids Engineering Summer Meeting
FEDSM2012

July 8-12, 2012, Rio Grande, Puerto Rico

FEDSM2012-20002

ROBUST AND EFFICIENT SETUP PROCEDURE FOR COMPLEX TRIANGULATIONS
IN IMMERSED BOUNDARY SIMULATIONS

Jianming Yang ∗

IIHR – Hydroscience and Engineering
University of Iowa

Iowa City, IA 52242
Email: jianming-yang@uiowa.edu

Frederick Stern
IIHR – Hydroscience and Engineering

University of Iowa
Iowa City, IA 52242

Email: frederick-stern@uiowa.edu

ABSTRACT
Immersed boundary methods have been widely used for sim-

ulating flows with complex geometries, as quality boundary-
conforming grids are usually difficult to generate for complex
geometries, especially, when motion and/or deformation is in-
volved. Complex geometries can be conveniently represented
using triangulated surfaces in a Lagrangian manner. A major
task in immersed boundary simulations is to inject the immersed
boundary information into the background Cartesian grid, such
as the inside/outside status of a grid point with regard to the im-
mersed boundary and the accurate sub-cell position of the im-
mersed boundary for a grid point next to it. For high resolution
simulations with moving/deforming boundaries, this step can be
very expensive. In this paper, a simple, fast, and robust proce-
dure is developed for setting up complex triangulations. Several
cases with complex geometries are performed to demonstrate the
efficiency and robustness.

INTRODUCTION
An important ingredient of non-boundary conforming meth-

ods is the description of an immersed boundary (IB) on the un-
derlying (usually, Cartesian) grid. For simple geometries such
as cylinder, sphere, and other frequently used primitives in com-
puter aided design, implicit surfaces by analytical functions can
be used to efficiently define inside/outside status of a grid point
and easily locate the intersections of the grid lines with immersed
surface. Sometimes parametrized curves/surfaces also can be

∗Address all correspondence to this author.

simple and efficient choices. However, for general complex ge-
ometries, surface meshes (usually with triangle elements) are the
most popular choices due to the well-balanced simplicity and ef-
ficiency. Surface triangulations can be used to represent arbitrary
geometries, either open or closed, solid or deformable, stand-
alone or interconnected. In IB methods, triangulations have been
frequently used to represent immersed objects, but the efficiency
and robustness of setup procedure has not been paid enough at-
tention to and adequately addressed in most immersed boundary
studies.

Gilmanov et al. [1] considered single convex body repre-
sented by a triangulated surface in their IB method. The grid
points inside the solid could be easily determined using the sur-
face normal vectors of all surface elements. For a convex body,
the projection of the IB point could be calculated readily using
the normal vector of the surface element. Then a probe point was
located in the fluid phase at the intercept with the grid plane by
the ray starting from the surface projection and passing the IB
point. In [2], this simplified algorithm was generalized to com-
plex geometries as follows. First, all grid points within a certain
distance (of magnitude about the near-body grid spacing) to the
centroid of any surface element were identified as near-boundary
points. Then for each near-boundary point, the surrounding sur-
face elements with distances from their centroids to this point
less than the prescribed threshhod given above were located. The
surface normal vectors of these elements were then used to dis-
tinguish internal (inside the body) and external (IB) points. Sim-
ilar to [1], a grid point could be determined as an internal point if
all nearby surface elements gave inside status to this point. And

1



external IB points were determined otherwise. After the near-
boundary points were separated, other internal points could be
simply determined by searching along grid lines and all points
within two internal points would be internal too. The projection
on the surface for an IB point and the probe point in the fluid
phase were determined the same as discussed in [1].

Choi et al. [3] presented a detailed discussion of their IB
setup procedure. The immersed objects were represented using
triangulations in STL (stereolithography) format. ADMesh [4]
was used to provide a consistent normal vector for each sur-
face element. For each element, the centroid and three ver-
tices together with the the corresponding surface normal vec-
tor and three angle-weighted pseudo-normal vectors at vertices
were stored/calculated. Then for a grid point within the bound-
ing box surrounding a surface element, the unsigned distance to
the surface was approximated by the distance to the nearest sur-
face point among the four candidates (one centroid and three ver-
tices). The surface normal vector and three pseudo-normal vec-
tors were used to assign the shortest distance a sign, which gave
the inside/outside status of the grid point. They also used a con-
sensus algorithm to improve the robustness of the above process.
In general, for each surface element, if the number of surface
points that gave inside status to a grid point was larger than the
number of surface points that gave outside status, that grid point
would be inside with regard to the given surface element; and
vice versa. The global signed distance function could be then
simply defined as the minimum one among all local signed dis-
tance functions from nearby surface elements. After the global
signed distance function was obtained, the grid points could be
easily classified into three different categories similar to Fadlun
et al. [5]. For a grid point requiring solution reconstruction, a
probe point was positioned in the direction of the outward nor-
mal vector from the surface passing that point. Then interpola-
tion stencils for velocity components and pressure were estab-
lished using surrounding fluid points for solution reconstruction
at the probe point. Since the distance function was approximated
only using the centroid and vertices instead of the accurate geo-
metric distance, a major limitation of this approach was that the
surface resolution had to be similar to that of the local grid, e.g.,
the average triangle size in [3] was at most twice of the local grid
cell size, and larger triangles could result in wrong inside/outside
classification.

In [6], the inside/outside status of a grid point with regard to
a triangulated immersed body was determined using the surface
normal vector of the surface element closest to that grid point.
Compared with the additional consensus algorithm in [3], this
approach was much simpler with the sacrifice of overall algo-
rithm robustness. The determination of closest surface point for
a ghost-cell grid point (at which the boundary conditions of the
immersed surface was applied) was similar to [3] in the sense that
the closest vertex of all surface elements to the ghost-cell point
was located. Then all surface elements sharing this vertex were

used to calculate the projected point of the ghost-cell point on
the surface along the surface normal directions. For degenerate
cases with more than one projected points or without any pro-
jected points on the surface, complicated search involving more
surrounding surface elements would be triggered. After the clos-
est surface point was identified, an image point for the ghost cell
could be defined in the fluid phase and tri-linear interpolation
was used to determine the field value at the image point.

The approaches discussed above made use of surface nor-
mal vectors to determine inside/outside status of a grid point.
Actually this is a classical problem in computational geometry
usually termed as point in polyhedron probelm [7]. For example,
recently in [8] an algorithm based on ray-casting method was
developed for IB method on general structured grids. Basically
the bounding box enclosing the immersed body was covered by
a coarse uniform Cartesian grid. Standard ray-triangle test as
given in [7] was performed for this Cartesian grid to obtain three
categories of control cells similar to those in the Cartesian grid
methods. For a control cell intercepting triangles, a list of these
triangles was created for a further ray-triangle interaction test of
all curvilinear grid points contained with this control cells.

Using ray tracing technique for grid point classification in
IB methods was first reviewed by Iaccarino and Verzicco [9].
They reported the employment of STL format for description
of immersed objects and grid point tagging using the geomet-
ric algorithm in O’Rourke [7], i.e., 3D segment-triangle inter-
section test. A healing process using many additional random
rays besides three perpendicular rays (i.e., along three grid line
directions for a Cartesian grid) was conducted for problematic
STL files. Note for the one-dimensional interpolation scheme re-
ported in [5], the intersections from the three perpendicular rays
provided all necessary interpolation information. However, for
interpolation along the surface normal direction, additional in-
formation such as projections of IB points on the surface had to
be obtained too. Compared with the inside/outside status deter-
mination using surface normals and surface centroids/vertices, a
very different property of the ray tracing technique is that it does
not rely on the resolution of surface triangulations as STL files
directly from CAD software packages may contain very skewed
triangles in surface areas with low curvature. Of course, to ob-
tain a good representation of flow information distribution on the
immersed surface such as pressure and shear stresses, a better
surface triangulation that with a resolution comparable with the
local grid spacing is still required.

Inside/outside classification and segment-triangle intersec-
tion using ray tracing algorithms are also frequently employed in
Cartesian-based grid generation [10]. Although there are some
similarities and many techniques developed for Cartesian grid
generation could be directly used for IB methods, the informa-
tion required for IB method is usually much less since irregular
cells from geometric cutting usually are not considered in most
IB methods.

2



IMMERSED BOUNDARY SETUP PROCEDURE
In this part a robust and efficient setup procedure for com-

plex triangulated surfaces frequently used in IB simulation will
be discussed in detail. The major components are the data struc-
ture for surface triangulations, inside/outside status determina-
tion of grid points, and closest surface point computation for an
IB point. These techniques are applicable to different variants of
the IB method.

Immersed Boundary Description
There are many different file formats (or data structures) for

representing triangulations. For example, STL format can be
used to describe a triangulated surface by only storing the unit
normal and three vertices of each triangle in Cartesian coordi-
nates. Usually the the geometry is a watertight solid and the nor-
mal vectors can define the inside/outside of the solid. It is a very
simple format and available from major CAD and software pack-
ages. Therefore, many IB methods for complex geometries chose
to use STL format. One of the major issues of STL format for IB
applications is the STL files from various sources may contain er-
rors such as holes, cracks, and triangles with wrong normal vec-
tors, and a preprocessing step using tools like ADMesh is usually
a necessary process to fix possible problems in the files. In addi-
tion, a STL file gives many redundant vertices as each element is
stored as three independent vertices without any connectivity or
topology information.

Another simple format gives the numbers of unique vertices
and triangles and lists of vertex coordinates and triangles (indices
of the three vertices), which is frequently used for representing
finite element surface triangulations, e.g., a Tecplot finite ele-
ment triangular surface data format [11]. This format is the most
memory-effective one, but it does not give topology information
either. Due to the lack of adjacency table, consistent treatment of
neighboring triangles during the geometric operations required
for the IB setup procedure is difficult to achieve.

In this study, we adopted the GTS format as defined in the
GNU Triangulated Surface Library [12]. The GTS Library is
an Open Source Free Software library, which provides a set of
useful functions to deal with 3D surfaces meshed with intercon-
nected triangles. GTS file format is very simple and a GTS file
consists of the numbers of vertices, edges, and faces (triangles)
followed by the lists of vertices, edges (vertex indices), and faces
(edge indices). The edge connectivity information extra to the
two formats discussed above turns out to be very critical for ro-
bust geometric operations, as will be clear in the following parts.
The package also provides useful conversion utilities between
GTS format and other widely used CAD formats such as STL
and DXF. There are file formats for surface triangulations with
complete vertex, edge, and face adjacency information. How-
ever, for IB applications, GTS format seems to be a good choice
as more information is not required for the geometric operations

involved in the setup procedure.

Inside/Outside Status Determination
In this study, we only consider immersed objects that are

closed, watertight manifold and well resolved by the underly-
ing grid. For “dirty” geometries with holes and/or cracks, a pre-
processing step that fixes these geometric problems is required.
ADMesh can be used to repair STL files by adding facets to fill
holes and matching edges to remove cracks. It is important to
check the fixed geometries to prevent any undesirable changes to
the original ones. For unclosed geometries and thin membranes,
other approaches that require no inside/outside status have to be
applied.

The most frequently used algorithm is the so-called “point in
polyhedron” test, that is, to cast a ray from a point and count the
number of intersections of this ray with the triangulation. There-
fore, the core geometric operation will be the “segment-triangle
intersection” test in 3D as discussed in [7]. For Cartesian grids,
all grid lines align with the coordinate directions, thus grid points
along a grid line can share the same ray for this purpose [9]. Also,
the “segment-triangle intersection” can be greatly simplified to a
“line-triangle intersection” test and the end point checks are not
necessary any more.

In this study, we further simplify the “line-triangle intersec-
tion” test to a 2D “point-in-triangle” test. In [9], the “line-triangle
intersection” test was used to calculate the spatial position of the
intersection of the line with the triangle. Since a coordinate-
aligned line is to be used as a ray, for the intersection of the line
with the plane that the triangle lies within, two of three coordi-
nates are already specified. By utilizing the linear property of a
triangle, the third coordinate can be evaluated using the barycen-
tric coordinates of the point (line/ray in 3D) with regard to the
2D projection of the 3D triangle. Compared with the 3D “line-
triangle intersection” test, the 2D “point-in-triangle” test only
uses one third floating operations, which represents a substan-
tial savings in computational cost for cases with high resolution
Cartesian grids and fine surface triangulations.

One major issue that affects the robustness of geometric al-
gorithms is the inaccuracies in floating point arithmetic. For in-
stance, a point very close to an edge of a triangle may be de-
termined as outside, but it could be calculated as outside for the
neighboring triangle that shares the same edge with the former
triangle due to the floating point error. To prevent problems of
this type in our algorithm, the barycentric coordinates for a trian-
gle are calculated based on the three edges, i.e., each edge and the
third vertex produces one determinant. For two triangles shar-
ing the same edge, the query of a point will be evaluated using
exactly the same function for the determination of its side with
regard to that edge. For more related discussion about robust
floating point usage, the reader is referred to [13]

One additional issue is that for cases with a point coincid-

3



ing with a vertex or on one of the edges, the intersection may be
countered multiple times for all triangles sharing the same ver-
tex and twice for two triangles sharing the same edge. In [9], up
to 20 random rays were casted for grid points that inside/outside
status could not be determined from the coordinate-aligned rays.
Thus 3D “segment-triangle intersection” became a necessity in
their algorithm. In this work, a different approach is developed
by slightly changing the position of the point. Basically, a 2D
point is represented by two floating point numbers for its two
coordinates. For each floating point number, the nearest float-
ing point number is located and the difference between them is
calculated. Then a perturbation of 10 ∼ 103 times of this dif-
ference is added to the corresponding coordinate, which repre-
sents a negligible change of the point position. Combined with
the robust barycentric coordinate calculation algorithm discussed
above, the 2D “point-in-triangle” test can give an accurate count
of intersections. In the rare situation that some collapses still
happen, further disturbance can be added until all rays get even
(includes zero) number of intersections with the triangulation.
Then for each grid point, the number of intersections by the ray
through this grid point are separated into left and right intersec-
tions. For a grid point inside the solid, the numbers of left and
right intersections should be both odd numbers, whereas for a
grid point outside the solid, both are even numbers. This step
further provides posterior check of the inside/outside status de-
termination process.

After the inside/outside status of all grid points is deter-
mined, further grid point classification for immersed boundary
treatment can be easily achieved. As shown in Fig. 1, a grid
point inside the solid body is identified as a solid point; if a grid
point is in the fluid phase and one or more grid line segments
connecting its immediate neighboring grid points are intersected
by the fluid-structure interface, then this grid point is defined as
an interface point or IB point as used in some other methods;
all the rest grid points are defined as fluid points. In our direct
forcing immersed boundary method, a forcing term is imposed
on a grid point in the solid point and interface point categories to
represent the effect of an immersed rigid body on the fluid flow.
Therefore, the grids from both categories are collectively defined
as forcing points for convenience.

Closest Surface Point Computation
After all the interface points are identified, the subcell posi-

tion of an interface point has to be located for the accurate impo-
sition of boundary conditions at the immersed surface. This step
is critical as it distinguishes the IB method from the zeroth-order
stepwise approximation of the immersed boundary. In [5], one-
dimensional scheme was adopted and only the subcell position
along a grid line was required. This is particularly convenient
for grid-line aligned ray casting techniques, as the ray-triangle
intersections are exactly the necessary data. However, Multiple

dimensional schemes are more widely accepted [14] and these
schemes can be described as a problem of find the closest point
(or usually normal projection) on the immersed surface for an
interface point.

An intuitive implementation of this task is to loop over all
triangles and calculate the closest point on the triangle if this in-
terface point is within a slightly enlarged bounding box of the
triangle under consideration. This approach is very simple and
works fine for immersed objects with small number of triangles.
However, for high-resolution simulations with complex geome-
tries, triangulations with millions of faces could be encountered.
This approach will be extremely expensive and the situation will
be worse if fluid-structure interactions with large-amplitude body
motions are considered.

In this study, an efficient algorithm is developed for obtain-
ing the closest point information for all interface points in one
single loop of all triangles. In general, for each triangle, a slightly
enlarged bounding box is used similar to what given in the previ-
ous part. For all grid points within the bounding box, only those
tagged as interface points will be further processed with closest
point calculation. The local shortest distance to the triangle will
be saved and the minimum value will be obtained after the loop
over all triangles is completed. The global closest point on the
triangulation corresponding to the global shortest distance will
be saved for further usage.

The 3D “closest point on triangle to point” algorithm used in
this study is adopted from [13]. The Voronoi feature regions of
a triangle is used to determine which feature the orthogonal pro-
jection of the interface point is in, then the closest point is only
evaluated with the corresponding feature region. The algorithm
in [13] has been optimized to give high performance and can be
directly used.

With the closest point on triangulation to an interface point
available, the interpolation stencil can be constructed as dis-
cussed in [14, 15].

EXAMPLES
In this part, several examples are used to demonstrate the

robustness and efficiency of our present algorithm. The first two
examples are used to show the treatment of special cases that rays
coincide with vertices and go through edges. The third example
is used to verify the algorithm complexity.

Cube
In this example, a cube is used to check the robustness of

our algorithm. The cube is discretized using 12 triangles and the
different views of the triangulation is shown in Fig. 2. The GTS
file for this triangulation consists of eight vertices:
-5 5 -5
5 5 -5

4



FIGURE 1. IMMERSED BOUNDARY TREATMENT.

5 -5 -5
-5 -5 5
-5 -5 -5
-5 5 5
5 5 5
5 -5 5
The first domain tested is [−10,10]× [−10,10]× [−10,10], and
the grid is uniform with 20×20×20 (in the x, y, and z directions,
respectively) points. We use rays in the x direction, thus these
rays coincides with the grid points in the y− z plane as shown
in Fig. 3a. Due to the staggered grid arrangement, there are
40 intersections (10×4edges) with the cube edges for the u grid,
and 40 intersections (10×4edges) with the cube edges on the two
y−z cube faces) for the v grid; and for the w grid, 40 intersections
with the diagonal edges on the two y− z cube faces.

If we slightly change the domain to [−10,10] ×
[−10.5,9.5] × [−10,10], and keep the grid uniform with
the same number of points in each direction. Again, there are 40
intersections (10× 4edges) with cube edges for the u grid (Fig.
3b), and 40 intersections (10× 4edges) with the diagonal edges
on the two y− z cube faces) for the v grid (Fig. 3c). However,
for the w grid, there are 12 intersections (3× 4triangles) with
cube vertices and 108 intersections (9× 12edges) with all the
edges on the two y− z cube faces (Fig. 3d).

With our present robust algorithm, the rays involved in these
intersections are repositioned by a very tiny amount (order of
10−13 for double precision number near 1). Then a second loop
over all triangles gives no such intersections any more, and the
inside/outside status determination is not affected by the tiny dis-
turbance introduced. Without these treatments, an intersection
with an edge might be counted twice and that with a vertex might
be counted even more times. Also, for the diagonal edges on the
y− z cube faces, a ray might be computed as outside for both

(a) OBLIQUE VIEW (b) y− z VIEW

FIGURE 2. TRIANGULATION OF A CUBE.

(a) RAY CASTING (b) u GRID

(c) v GRID (d) w GRID

FIGURE 3. RAY CASTING AND SOLID-GRID CONFIGURA-
TIONS FOR THE CUBE CASE.

triangles on one cube face, i.e., leaked through the “crack” be-
tween two triangles, but computed corrected on the other cube
face, then the inside/outside status of the grid points on this ray
would be determined incorrectly.

Triangular Bipyramid
In this example, a triangular bipyramid is used to further

check our algorithm. This geometry is constructed by joining
two tetrahedra along one face. It has 6 triangles and the two
different views of it are shown in Fig. 4. The GTS file for this
triangulation consists of five vertices:
0 0 -5

5



(a) OBLIQUE VIEW (b) Y −Z VIEW

FIGURE 4. TRIANGULATION OF A TRIANGULAR BIPYRA-
MID.

-5 -5 0
5 0 0
-5 5 0
0 0 5
The first domain tested is [−10,10]× [−10,10]× [−10,10], and
the grid is uniform with 20×20×20 (in the x, y, and z directions,
respectively) points. We use rays in the x direction, thus these
rays coincides with the grid points in the y− z plane as shown
in Fig. 5a. Due to the staggered grid arrangement, there are 40
intersections (5× 4edges) with the edges for the u grid, and 20
intersections with the edges in the x− z plane for the v grid; and
for w grid, 40 intersections with edges in the x− y plane.

If we slightly change the domain to [−10,10]× [−10,10]×
[−10.5,9.5], and keep the grid uniform with the same number of
points in each direction. Again, there are 40 intersections with
edges for the u grid (Fig. 5b), and 40 intersections with the edges
for the w grid (Fig. 5d). However, for the v grid, there are 18
intersections with triangle vertices and 82 intersections with all
edges (Fig. 5c).

It is evident that some rays go through vertices/edges for the
whole triangulation only once, with the inside/outside determi-
nation rules, many grid points would be categorized incorrectly.
Therefore, it is required to use a different ray to avoid the inter-
sections with vertices and edges. If a random ray not along the
grid line direction is used, complicated 3D “ray-triangle intersec-
tion” test has to be applied; in addition, all grid points at the grid
lines intersecting with vertices/edges have to be checked indi-
vidually, which would make the algorithm very complicated and
expensive as each ray from each point has to be checked against
every triangle.

Sphere
In this example, a unit sphere (diameter D = 1) is used to

check the efficiency of our algorithm. As listed in Tab. 1, eight
triangulations ranging from 80 to 1310720 faces give a wide
spectrum of surface resolution. Fig. 6 shows the first six triangu-

(a) RAY CASTING (b) u GRID

(c) v GRID (d) w GRID

FIGURE 5. RAY CASTING FOR THE TRIANGULAR BIPYRA-
MID CASE.

lations, the last two are too dense to distinguish surface elements
and not shown here. Each fine triangulation is obtained from di-
viding one triangle in the coarser one into four pieces and the
edge length, ∆l, is halved. The edge length ranges from 0.2129
to 0.0017. It is evident that the coarsest triangulation with 80
triangles gives a very crude approximation of the sphere surface
and its volume is about 13% less than the analytical value. But
the triangulation with 1280 faces turns out to be a good approx-
imation with only 1% less volume. If the surface elements are
directly used for evaluating force distribution on the surface, the
surface resolution is usually required to be not too different from
the local grid spacing. And this may result in a surface trian-
gulation much finer than what needed for resolving the surface
itself. For instance, in the first example, a cube can be perfectly
described by 12 triangles, but apparently using these triangles to
approximate the surface force distribution is not accurate. One
possibility is to use two triangulations, with a coarser one for IB
setup and the fine one for surface force calculation. Of course,
this comes at a price of complicated data structures and more
memory consumption.

Since the test is only to examine the efficiency, a domain
of [−0.64,0.64]× [−0.64,0.64]× [−0.64,0.64] is adopted. As
listed in Tab. 2, seven uniform grids are chosen for domain
discretization, with 20, 40, 80, 160, 320, 640, and 1280 points
for each coordinate direction, respectively. And the grid spacing
ranges from 0.064 to 0.001. The combination of surface triangu-

6



TABLE 1. TRIANGULATIONS OF A UNIT SPHERE (V = 0.5236).

Vertices Edges Faces Volume ∆l

1 42 120 80 .4573 .2129

2 162 480 320 .5049 .1065

3 642 1920 1280 .5191 .0532

4 2562 7680 5120 .5225 .0266

5 10242 30720 20480 .5233 .0133

6 40962 122880 81920 .5235 .0067

7 163842 491520 327680 .5236 .0033

8 655362 1966080 1310720 .5236 .0017

TABLE 2. SEVEN UNIFORM GRIDS.

Grid 1 2 3 4 5 6 7

npoint 20 40 80 160 320 640 1280

∆h .064 .032 .016 .008 .004 .002 .001

lations and grids give us a comprehensive parametric space for
our test.

As discussed in the previous section, the algorithm for in-
side/outside status determination is divided into two parts. The
first part is a loop over all triangulation faces. This loop may re-
peat once if there are rays going through vertices and/or edges.
The second part is a loop over each grid point to determine its
inside/outside status based on the intersections on the ray pass-
ing this point. The latter doesn’t change with the resolution of
the surface triangulation and has a linear algorithm complexity
O(N3) with N the number of grid points in one grid direction
(npoint in Tab. 2 and the figures). For part one, Fig. 7 shows the
ray casting CPU time as a function of npoint for all eight triangu-
lations. In general, as the surface triangulations become refined
(n f acet increases from 80 to 1310720), the algorithm complex-
ity changes from O(npoint2) to O(npoint).

Figure 8 shows the ray casting CPU time as a function of
n f ace for all seven grids. One coarser grids, as the surface trian-
gulation is refined, the CPU time increases almost linearly. On
the finest grid, the CPU time increases very slow until the trian-
gulation becomes finer than what is necessary for resolving the
surface (triangulation 5 gives a adequate resolution as it volume
is 99.9% of the analytical value).

After each grid point has been categorized into either inside

(a) 80 FACES (b) 320 FACES

(c) 1280 FACES (d) 5120 FACES

(e) 20480 FACES (f) 81920 FACES

FIGURE 6. TRIANGULATIONS OF A UNIT SPHERE.

or outside type, an interface point is determined by checking its
neighboring points for IB crossing. As this step is performed
for each grid point, it has a linear algorithm complexity, i.e.,
O(npoint3).

For the closest point computation algorithm, it is different
from the ray casting algorithm as it builds up a 3D bounding
box for each triangle and check for interface points within the
bounding box. As the grid is refined, the number of grid points
to be checked increases rapidly. Figure 9 shows the CPU time
as a function of number of grid points in one coordinate direc-
tion. It is evident that for coarser surface triangulations, the
bounding boxes are larger and involves much more grid points;
thus the CPU time increases more rapidly than that for finer sur-
face triangulations. In general, the algorithm complexity changes
from O(npoint2.7) to O(npoint1.5) as the surface triangulation
increases from 80 facets to 1310720 facets. Similar to the ray
casting algorithm, with a very fine underlying Cartesian grid a

7



FIGURE 7. RAY CASTING CPU TIME AS A FUNCTION OF
npoint FOR ALL TRIANGULATIONS.

very coarse surface triangulation doesn’t result in much CPU
time savings.

On the other hand, Figure 10 shows the CPU time as a func-
tion of number of surface facets for all seven grids. On coarser
grids, the algorithm complexity is almost linear, e.g., propor-
tional to the number of facets. As the grid is refined,

The last step of the immersed boundary setup is the con-
struction of interpolation stencils for all interface points. The
computational cost of this step is proportional to the number
of interface points, and depends on the configuration of the im-
mersed object and the underlying grid, instead of the resolution
of the surface triangulations. Nonetheless, with the same under-
lying grid, a refined triangulation for a curved immersed surface
does produce some more interface points than a coarse triangu-
lation.

CONCLUSIONS
In this study, we have developed a simple and robust algo-

rithm for setting up immersed objects represented by surface tri-
angulations in immersed boundary simulations. First, we have
reviewed approaches in the literature and analyzed their disad-
vantages. Then we have discussed our algorithm in detail. It
has two major components, i.e., ray-casting algorithm for the in-
side/outside status determination of a grid point with regard to
the solid object, and the computation of the closest point on the
surface triangulation for an interface point. The former algorithm
is particularly robust compared with previous approaches. It uses

FIGURE 8. RAY CASTING CPU TIME AS A FUNCTION OF
n f ace FOR ALL GRIDS.

exactly the simple formulation for evaluating the relative posi-
tion of a ray with respect to an edge shared by two triangles; also
the extreme cases such as ray passing vertices and/or edges are
handled without any ambiguity. The algorithm completes with
a couple of loops over all surface facets, which is very simple
and efficient. For the closest point computation, a very robust
algorithm computing the exact closest point to the surface facets
including edges and vertices is adopted. It is also simple and effi-
cient as the computation completes in a single loop of all surface
facets.

Several cases have been performed to demonstrate the effi-
ciency and robustness. The first two examples are used to show
the treatment of special cases that rays coincide with vertices and
go through edges. The third example demonstrates the CPU time
complexity of different components of the algorithm.

ACKNOWLEDGMENT
This work was sponsored by the Office of Naval Research

(ONR) under grant N000141-01-00-1-7, with Dr. Patrick Purtell
as the program manager.

REFERENCES
[1] Gilmanov, A., Sotiropoulos, F., and Balaras, E., 2003. “A

general reconstruction algorithm for simulating flows with
complex 3d immersed boundaries on cartesian grids”. Jour-
nal of Computational Physics, 191(2), pp. 660 – 669.

8



FIGURE 9. CLOSEST POINT COMPUTATION CPU TIME AS A
FUNCTION OF npoint FOR ALL TRIANGULATIONS.

[2] Gilmanov, A., and Sotiropoulos, F., 2005. “A hybrid carte-
sian/immersed boundary method for simulating flows with
3d, geometrically complex, moving bodies”. Journal of
Computational Physics, 207(2), pp. 457 – 492.

[3] Choi, J.-I., Oberoi, R. C., Edwards, J. R., and Rosati, J. A.,
2007. “An immersed boundary method for complex in-
compressible flows”. Journal of Computational Physics,
224(2), pp. 757 – 784.

[4] Martin, A. D., 1998. ADMesh version 0.95.
https://sites.google.com/a/varlog.com/
www/admesh-htm. [Online; accessed 1-January-2012].

[5] Fadlun, E. A., Verzicco, R., Orlandi, P., and Mohd-Yusof,
J., 2000. “Combined immersed-boundary finite-difference
methods for three-dimensional complex flow simulations”.
Journal of Computational Physics, 161(1), pp. 35–60.

[6] Mittal, R., Dong, H., Bozkurttas, M., Najjar, F., Vargas, A.,
and von Loebbecke, A., 2008. “A versatile sharp interface
immersed boundary method for incompressible flows with
complex boundaries”. Journal of Computational Physics,
227(10), pp. 4825 – 4852.

[7] O’Rourke, J., 1998. Computational Geometry in C, 2 ed.
Cambridge University Press, New York, NY.

[8] Borazjani, I., Ge, L., and Sotiropoulos, F., 2008. “Curvilin-
ear immersed boundary method for simulating fluid struc-
ture interaction with complex 3d rigid bodies”. Journal of
Computational Physics, 227(16), pp. 7587 – 7620.

[9] Iaccarino, G., and Verzicco, R., 2003. “Immersed boundary
technique for turbulent flow simulations”. Applied Mechan-

FIGURE 10. CLOSEST POINT COMPUTATION CPU TIME AS A
FUNCTION OF n f acet FOR ALL GRIDS.

ics Reviews, 56(3), pp. 331–347.
[10] Aftosmis, M. J., Berger, M. J., and Melton, J. E., 1998.

“Robust and Efficient Cartesian Mesh Generation for
Component-Based Geometry”. AIAA Journal, 36, June,
pp. 952–960.

[11] Tecplot, Inc., 2011. Tecplot 360 R©2011 Data Format
Guide, Release 2. http://download.tecplot.
com/360/current/dataformat.pdf. [Online; ac-
cessed 1-January-2012].

[12] Popinet, S., 2011. The GNU Triangulated Surface Li-
brary. http://gts.sourceforge.net/. [Online;
accessed 1-January-2012].

[13] Ericson, C., 2005. Real-Time Collision Detection. Morgan
Kaufmann, San Francisco.

[14] Balaras, E., 2004. “Modeling complex boundaries using
an external force field on fixed cartesian grids in large-eddy
simulations”. Computers & Fluids, 33(3), pp. 375–404.

[15] Yang, J., and Balaras, E., 2006. “An embedded-boundary
formulation for large-eddy simulation of turbulent flows in-
teracting with moving boundaries”. Journal of Computa-
tional Physics, 215(1), pp. 12–40.

9

https://sites.google.com/a/varlog.com/www/admesh-htm
https://sites.google.com/a/varlog.com/www/admesh-htm
http://download.tecplot.com/360/current/dataformat.pdf
http://download.tecplot.com/360/current/dataformat.pdf
http://gts.sourceforge.net/

