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ABSTRACT
In this paper, a direct forcing immersed boundary method

is presented for the simple and efficient simulation of strongly
coupled fluid-structure interaction. The previous formulation
by Yang and Balaras (An embedded-boundary formulation for
large-eddy simulation of turbulent flows interacting with mov-
ing boundaries, J. Comput. Phys. 215 (2006) 12-40) is greatly
simplified without sacrificing the overall accuracy. The fluid-
structure coupling scheme of Yang et al. (A strongly-coupled,
embedded-boundary method for fluid-structure interactions of
elastically mounted rigid bodies, J. Fluids Struct. 24 (2008) 167-
182) is also significantly expedited without altering the strong
coupling property. Several cases are examined and compared
with the results from the previous formulations to demonstrate
the accuracy, simplicity and efficiency of the new method.

INTRODUCTION
The direct forcing immersed boundary methods using dis-

crete momentum forcing terms have been well received among
the developers and practitioners of non-boundary conforming
methods in the computational fluid dynamics (CFD) field, mainly
because of the simplicity of the concept and the ease of the imple-
mentation of these methods. Initially, the developments were fo-
cused on stationary immersed boundaries ( [1]; [2]; [3]; [4]); and
very few were applied to problems with moving boundaries, due
to that the implications of boundary movement on a fixed grid

∗Address all correspondence to this author.

in a time-splitting scheme, such as the fractional-step method,
were not systematically addressed. Then Yang and Balaras [5]
demonstrated that, non-physical historical information may en-
ter the flow field in a time step when some grid points with re-
constructed solutions at the previous time step become normal
fluid points if no treatment is applied to recover the correct his-
torical information at these points. They proposed a field ex-
tension strategy that, at the end of each time step, the flow field
is extended into the grid points with non-physical values near
the immersed boundary through extrapolations. A variety of ex-
amples ranging from laminar to turbulent flows were given to
show the accuracy and effectiveness of this approach. They fur-
ther extended it in [6] to fluid-structure interaction (FSI) prob-
lems with multiple rigid bodies using a strong coupling scheme
in which the structural dynamics was solved via the Hamming’s
fourth-order predictor-corrector algorithm. In their strong cou-
pling scheme, the fluid and the structure are treated as elements
of a single dynamical system, and both sets of governing equa-
tions are integrated simultaneously and interactively in the time
domain. It is a very efficient iterative scheme as the number of
iterations does not change much with increasing the number of
degrees of freedom of the structural part and the convergence of
the whole coupled system usually is reached within less than ten
iterations. In addition, it is not limited to FSI problems with solid
bodies, for example, in [7], it was used to study the aerodynamic
performance of a flexible hovering wing.

In general, the approaches discussed above for FSI prob-
lems (prescribed motion in [5] and predicted motion in [6], re-
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spectively) are quite straightforward and efficient. One issue
with the field extension strategy is that the definition of pres-
sure points requiring the extension operation is not as simple as
that for velocity points. Instead of a simple geometric relation-
ship, for instance, the closest grid points to the immersed bound-
ary along grid lines (for velocity components, closest grid points
in the fluid phase and solid phase are defined as forcing points
and pseudo forcing points, respectively, in [5]), the status of all
surrounding velocity points (four/six in two-/three-dimensional
cases) has to be used to define a pressure point. And such a
point may be in either the fluid or the solid phase, depending on
the configuration of the immersed boundary and the grid layout.
This is not particularly convenient in terms of algorithm design
and implementation. Furthermore, for grid points in the solid
requiring field extension operation, sometimes ambiguities may
exist near sharp corners or under-resolved regions with regard
to the normal directions to the immersed boundary. To remove
these ambiguities, significant amount of coding work is needed
and the clarity and efficiency of the algorithm may be affected.
On the other hand, as each fluid-structure iteration in the strong
coupling scheme given in [6] involves the complete solutions
of both sets of equations, this scheme can be still quite expen-
sive for complicated cases, such as two-phase flows and adaptive
mesh refinement, where fast Poisson solvers are not available or
straightforwardly applicable. Another strong coupling scheme
with immersed boundary method in [8] avoided the iterations
by using a non-inertial reference frame fixed to the body. This
scheme can be very efficient for some applications, although it
is limited to a single solid body and the use of a non-inertial ref-
erence frame makes the boundary conditions, especially, inflow
and outflow, difficult to handle.

The objective of this work is to address the issues mentioned
above. We shall reformulate the pressure field extension and
eliminate the cumbersome process of identification and extrapo-
lation of pressure points requiring the extension operation. With
the new formulation we are able to accelerate the whole compu-
tation several times or even one order of magnitude comparing
to the original method in [6].

The rest of this paper is organized as follows: In the next
section the mathematical model for FSI problems is introduced.
Then in the numerical methods section, following a summary of
the original approaches in [5] and [6], our current approach is
discussed in detail. In the results section, the accuracy of the re-
formulated field extension strategy is evaluated using a case with
prescribed motion, then two FSI problems are used to demon-
strate the efficiency and applicability of our new algorithm.

MATHEMATICAL MODEL
The computational domain for a FSI problem consists of the

fluid and structural domains. In this work, a primitive variable
method is used for the fluid domain, i.e., the velocity u and

FIGURE 1. RELATIONSHIP BETWEEN THE INERTIAL AND
NON-INERTIAL REFERENCE FRAMES.

pressure p are the unknown variables of fluid flow field. For
the structural part, the displacement d is chosen as the unknown
field variable and, correspondingly, the structural boundary can
be easily defined. In an immersed boundary approach, usually a
Cartesian grid is used to cover the whole domain, which means
the structural boundary or the fluid-structure interface, Γ, has to
be defined (and tracked for moving boundary problems) on the
fixed Cartesian grid as well. On the other hand, since the focus
of this work is on the incompressible flow interacting with mov-
ing bodies, the introduction of body-fixed non-inertial reference
frames facilitate the solution of rigid body dynamics naturally.
Therefore, the coordinate systems used in the present study is
discussed first.

Coordinate Systems
As shown in Fig. 1, two types of coordinate systems are

usually used in FSI problems: an inertial reference frame fixed
to or moving at a constant velocity with respect to the earth, and
numerous non-inertial reference frames with each attached to a
moving body under consideration. All fluid variables are con-
veniently defined in the inertial reference frame, whereas for a
moving body, the motion can be described by the linear and an-
gular displacement with respect to the inertial reference frame,
and the linear and angular velocity with respect to the its own
body-fixed non-inertial reference frame.

For example, the translational displacement of body a is
given by

da = (xOa ,yOa ,zOa)
T , (1)

in the inertial reference frame. It is the position vector of the
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origin, usually chosen to coincide with the center of mass, for
the non-inertial reference frame attached to body a. And

Θa = (φa,θa,ψa)T (2)

gives the three Euler angles for defining the orientation of body a.
For simplicity, subscript will be omitted hereafter. On the other
hand, the linear and angular velocities of the body are defined as

v = (vx,vy,vz)T , (3)
Ω = (Ωx,Ωy,Ωz)T (4)

with respect to the non-inertial reference frame, respectively.
Therefore, a position vector in the non-inertial reference

frame can be transformed back into a vector in the inertial ref-
erence frame through a linear transformation given by the linear
translation d and the Euler angle rotation Θ. The latter can be
used to define a rotation matrix R, which can be written, for in-
stance, as in [9], in terms of Euler angles according to the xyz-
convention in the rotation order, as:

R =

 cψcθ −sψcφ + cψsθsφ sψsφ + cψsθcφ

sψcθ cψcφ + sψsθsφ −cψsφ + sψsθcφ

−sθ cθsφ cθcφ

 , (5)

where s·= sin(·) and c·= cos(·).
The translational velocity of the body with respect to the

inertial reference frame can be related to the linear velocity in
the non-inertial reference frame by the following equation:

ḋ = Rv, (6)

vice versa,

v = R−1ḋ = RT ḋ, (7)

as R is an orthogonal matrix.
The angular velocity Ω in the non-inertial reference frame

can be related to the time rate of change of the Euler angles as
follows

Θ̇ = QΩ , (8)

where Q is the transformation matrix given by

Q =

 1 sφsθ/cθ cφsθ/cθ

0 cφ −sφ

0 sφ/cθ cφ/cθ

 . (9)

And the inverse transformation is

Ω = Q−1
Θ̇ =

 1 0 −sθ

0 cφ cθsφ

0 −sφ cθcφ

Θ̇. (10)

It is clear Eq. (9) fails for θ = 90◦. This usually is not an issue
for many systems as they are not disigned to have such an op-
erational condition. Nontheless, quaternions can be adopted to
avoid this singularity.

Navier–Stokes Equations
In the inertial reference frame defined above, the Navier–

Stokes equations governing the incompressible viscous flows can
be written as:

∂u
∂ t

+∇ ·uu =
1

Re
∇

2u+ f, (11)

∇ ·u = 0, (12)

where t is the time, f represents the momentum forcing term
due to the immersed body. The above equations have been non-
dimensionalized using a reference length scale L and reference
velocity scale U . Hence the Reynolds number in Eq. (11) is de-
fined as Re = ρ fUL/µ with ρ f the density of the fluid and µ the
dynamic viscosity.

Equations for Rigid Body Dynamics
The dynamics of a rigid body in a fluid-structure coupled

system is described by Newton’s second law and Euler’s equation
in the body-fixed non-inertial reference frame:

Ms
dv
dt

+MsΩ ×v = FN +EN, (13)

Is
dΩ

dt
+Ω × (IsΩ) = TN +SN, (14)

where Ms is the mass of the solid body, ms, times a 3×3 identity
matrix (tensor) I, Is is the moment of inertia of the body, FN and
TN are the fluid force and moment in the non-inertial reference
frame, respectively. The force and moment FN and TN can be
transformed to those in the inertial reference frame as

FI = RFN, (15)
TI = RTN, (16)

respectively. Likewise, all other sources of force and moment
applied on the body in the non-inertial reference frame are rep-
resented by EN and SN, respectively. The external force EN can
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be obtained from that in the inertial reference frame using the
following transformation:

EN = RT EI, (17)

and the external force in inertial reference frame is given by

EI =−Cḋ−Kd+(Ms−Mf)g, (18)

with C the damping matrix, K the stiffness matrix, g the gravi-
tational acceleration, and Mf = mfI = ρfVsI the mass matrix of
the fluid displaced by the solid body of volume Vs. Note that the
external moment on the body, EN, can be defined in a similar
manner except that the anchor points of the springs may be fixed
in the inertial reference frame or following the rigid body mo-
tion, and the angular velocity Ω can be related to the time rate
of change of the Euler angles Θ̇ directly only in the one DOF
(degree-of-freedom) rotation cases.

NUMERICAL METHOD
Navier–Stokes Solver

The details of many aspects of the numerical method used
in this work have been presented in several previous studies
[5, 6, 10]. A fractional-step method is employed for velocity-
pressure coupling, in which a pressure Poisson equation is solved
to enforce the continuity equation. A semi-implicit scheme
is used for time advancement with the second-order Adams–
Bashforth scheme for the convection terms and the Crank–
Nicolson scheme for the viscous terms. The spatial derivatives
are discretized using second-order central difference schemes on
a staggered Cartesian grid, on some under-resolved grids higher-
order upwind schemes are applied to the convective terms for
better numerical stability. Approximate factorization method is
used for the discretized momentum equations and a parallel tridi-
agonal solver is then applied to invert the linear systems. The
Poisson equation is solved using either a direct solver from the
FISHPACK library [11] or a semi-coarsening multigrid solver
from the Hypre package [12].

Immersed Boundary Treatment
In a direct forcing immersed boundary method, a major task

is the evaluation of the momentum forcing term to represent the
effect of an immersed rigid body on the fluid flow. Depending on
the specific approach used, this step can be quite different. Here,
a simple and straightforward approach is adopted by directly re-
constructing the solution near the immersed boundary such that
the boundary conditions on the immersed boundary are satisfied.
At the forcing points, which are points in the fluid phase but with
neighboring point in the solid phase, a local reconstruction is

FIGURE 2. IMMERSED BOUNDARY TREATMENT.

necessary to obtain un
f . We use a linear interpolation stencil,

which include one point on the immersed boundary (un
solid) and

three (two for 2D cases) fluid points near the forcing point, as
shown in Fig. 2, to reconstruct the expected un

f using the aux-
iliary velocity field ũ. For details, the reader is referred to [5]
and [6]. Note that un

solid is unknown in a fluid-structure inter-
action problem and has to be obtained by solving the dynamic
equations for rigid body motion.

In [5], a field extension strategy was proposed to recover
the physical values of pressure/velocity derivatives at the fluid
points which were forcing points at the previous time step. This
field extension can be implemented by extrapolating the physical
information from the flow field into the regions containing non-
physical information before the immersed boundary is relocated
at each time step. For velocity components, the non-physical
region can be easily defined as the grid points covered by the im-
mersed body (for under-resolved grids or geometries with lower
dimensions than the grids, the definition will involve those neigh-
boring points of a forcing point that are in the fluid too). How-
ever, the extension for pressure field is performed on points that
are selected based on their association with non-physical veloc-
ity points due to the staggering of the grid. The reader is referred
to [5] for more details. The overall field extension strategy is
quite successful by eliminating spurious forces generated near
the immersed boundary, as shown in the results given in [5] for
prescribed motion and [6] for predicted motion. Note that FSI
applications are very sensitive to spurious force oscillation, es-
pecially when the light structures with density close to or less
than the fluid density. The robustness of the strong coupling FSI
algorithm in [6] also shows the effectiveness of the field exten-
sion strategy.

Here we propose a simple and effective version of the field
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extension strategy for the pressure field. In [5], the boundary
condition for pressure

(
∂ p
∂n

)
|Γ =−

(
Du
Dt

·n
)
|Γ, (19)

was used to extend physical pressure information into the regions
with non-physical pressure values. Notice that the purpose of this
pressure extension is to fix the non-physical pressure gradient
components at those velocity forcing points, we can actually fix
components of the pressure gradient at the velocity forcing points
directly. At the immersed boundary, the boundary condition for
components of the pressure gradient can be written as

(
∂ p
∂xi

)
|Γ =−

(
Dui

Dt

)
|Γ, (20)

where xi (i = 1,2,3 for 3D and i = 1,2 for 2D problems) is the
ith Cartesian coordinate and ui is the corresponding Cartesian
velocity component. This equation gives the Dirichlet boundary
condition for the ith component of the pressure gradient, which
is also collocated with the ith velocity component. Therefore, the
reconstruction stencil for the velocity component can be directly
used to interpolate the corresponding component of the pressure
gradient at the same location. Comparing to the extrapolation of
pressure itself in [5], this step represents a great simplification
of the whole procedure for immersed boundary treatment. The
pressure points requiring field extension are no longer necessary
to be defined and all associated data structures and computational
overhead are eliminated. The only extra expense is some tempo-
rary memory space to store the pressure gradient, which has to
be evaluated in the original approach anyway.

ODE Solver for Rigid Body Dynamics
As in [6], Hamming’s 4th-order predictor-corrector scheme

is used to solve the governing equations for rigid body dy-
namics. First, the equations are rewritten as a system of non-
dimensionalized, 2n first-order ordinary differential equations (n
is the degrees of freedom of the structures). One equation from
this system can be given as

q̇ =
dq
dt

= f (t,q), (21)

where q represents the displacement or velocity in a certain di-
rection. With Hamming’s scheme [13], we have three steps:

1. predictor step: the solution is explicitly predicted and then

modified using error estimate from the previous time step

qn
p = qn−4 +

4
3

∆t
(
2q̇n−1− q̇n−2 +2q̇n−3) , (22)

qk=0
c = qn

p−
112
121

(
qn−1

p −qn−1
c

)
, (23)

where subscripts p and c represent the predicted and cor-
rected values, respectively, and superscript k is the iteration
index for the corrector step.

2. corrector step: the solution from above is corrected itera-
tively

for k = 1, · · · ,m

qk
c =

1
8

(
9qn−1−qn−3)+

3
8

∆t
(

2q̇k−1
c +2q̇n−1− q̇n−2

)
if |qk

c −qk−1
c |< ε, qn

c = qk
c, exit. (24)

where m is the maximum number of iterations and ε is the
tolerance ( ε = 10−8 is used in the present study). And this
convergence criterion has to be met for all equations in the
system before the iteration can be terminated.

3. finalizer step: the solution is updated using the estimated
truncation error

qn = qn
c +

9
121

(
qn

p−qn
c
)
. (25)

This scheme is very robust and efficient as shown in [6].

RESULTS
In this part, a case with prescribed motion is presented first

to establish the accuracy of the reformulated field extension and
force calculation. Then a circular cylinder freely oscillating in a
free stream is used to validate our FSI algorithm and demonstrate
the efficiency. The last case is a rectangular plate in a free fall
fluttering in a fluid.

In-Line Oscillation of a Circular Cylinder
In this case, a circular cylinder is forced to do a prescribed

translational motion in a fluid at rest. The equation of motion
is given by x(t) = −Asin(2π f t), where A is the oscillation am-
plitude. Two key parameters are the Reynolds number, Re =
UmaxD/ν , and the Keulegan-Carpenter number, KC = Umax/ f D,
where Umax is the maximum velocity of the cylinder, D is the di-
ameter of the cylinder, ν is the kinematic viscosity of the fluid,
and f is the characteristic frequency of the oscillation. The pa-
rameters from the experiments and numerical simulations in [14]
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FIGURE 3. TIME HISTORY OF THE IN-LINE FORCE ACTING
ON A CYLINDER OSCILLATING IN A FLUID AT REST AT RE =
100 AND KC = 5. ◦ : EXPERIMENTAL DATA [14]; · · · · · · : GRID
120×240; −−− : GRID 240×480; —— : GRID 480×960.

were used here, i.e., Re = 100 and KC = 5. The size of compu-
tational domain is 40D× 24D in the x and y directions, respec-
tively, with the cylinder located at the center initially. Three dif-
ferent grids of 240×120, 480×240, and 960×480 were used for
this case and around the cylinder the grids were approximately
uniform in both directions with spacings of 0.01D, 0.02D, and
0.04D, respectively. A constant time step of 0.005D/Umax was
used on all three grids.

The computations were performed until periodic vortex
shedding was established for all cases. Figure 3 shows the time
history of the in-line force, Fx(t), acting on the cylinder. Results
from all three grids are in very good agreement with the refer-
ence data from [14]. This validates our simplified approach for
applying the pressure field extension is accurate.

Figure 4 shows the pressure and vorticity contours at four
different phase-angles from the fine grid simulation. The results
are in very good agreement with the corresponding results re-
ported in [14].

Free X-Y Oscillation of A Circular Cylinder
The fluid-structure interaction problem of an elastically

mounted circular cylinder in a free stream was considered to
show the accuracy of our new formulation. The cylinder can
be modeled as a mass-spring-damper system, and the governing
equations for the cylinder motion are as follows:

ẍ+2ζ

(
2π

U∗

)
ẋ+

(
2π

U∗

)2

x =
2

πm∗CD, (26)

ÿ+2ζ

(
2π

U∗

)
ẏ+

(
2π

U∗

)2

y =
2

πm∗CL, (27)

where the mass ratio is m∗ = ms/mf, the reduced velocity is U∗ =
U∞/ fND. The natural vibration frequency of the structure and the

(a) φ = 0◦

(b) φ = 96◦

(c) φ = 192◦

(d) φ = 288◦

FIGURE 4. PRESSURE (LEFT) AND VORTICITY (RIGHT) CON-
TOURS AT FOUR DIFFERENT PHASE-ANGLES FOR AN IN-LINE
OSCILLATING CYLINDER IN A FLUID AT REST AT RE = 100
AND KC = 5.

damping ratio are given by

fN =
1

2π

√
k/ms, ζ =

1
2

c
√

kms, (28)

respectively, where k is the spring constant and c is the damping
coefficient. the drag and lift coefficients are defined as

CD =
fx

1
2 ρfDLcU2

∞

, CL =
fy

1
2 ρfDLcU2

∞

, (29)

with Lc is the span of the cylinder, fx and fy the instantaneous
drag and lift forces on the cylinder, respectively. Also, x = Xo/D
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and y = Yo/D are the non-dimensionalized horizontal and verti-
cal displacements with Xo and Yo the streamwise and transverse
displacement of the cylinder center. Note that the same length
and velocity reference scales as in the Navier-Stokes equations
(the cylinder diameter, D, and the freestream velocity, U∞) were
used here.

The parameters were selected to match the spectral ele-
ment simulation in a non-inertial reference frame in [15]. The
Reynolds number is Re = 200, the reduced velocity is U∗= 5.0,
the damping ratio is ζ = 0.01, and the mass ratio is m∗ = 4/π .
In our simulation, the inflow of a uniform velocity U∞ is lo-
cated 10D upstream of the cylinder. The outflow boundary is
located 30D downstream of the cylinder and a convective bound-
ary condition is applied. Both top and bottom boundaries are lo-
cated 10D away from the cylinder and a freestream condition is
used. Three different grids were used to cover the whole domain
and the number of grid points for the three grids are 160× 120,
320× 240, and 640× 480 in the streamwise and transverse di-
rections, respectively. The grids were stretched in both direc-
tions. Near the cylinder, the grid spacings were 0.04D× 0.04,
0.02D× 0.02D, and 0.01D× 0.01D, respectively. A constant
time step of 0.004D/U∞ was used for all three grids.

FIGURE 5. CENTERLINE X − Y DISPLACEMENT AND DIS-
PLACEMENT-VELOCITY PHASE PLOTS FOR A CIRCULAR
CYLINDER FREELY VIBRATING IN THE (X ,Y ) PLANE. ◦ : SPEC-
TRAL ELEMENT SIMULATION IN A NON-INERTIAL REFER-
ENCE FRAME [15]; O : PREVIOUS IMMERSED BOUNDARY SIM-
ULATION [6]; 4 : GRID 120×160; 3 : GRID 240×320; � : GRID
480×640.

On all three grids, the simulations were carried out first with
fixed cylinders. After the periodic vortex shedding pattern was
established, the cylinder was released to have two degrees of
freedom in both streamwise and transverse directions. All simu-
lations had been run until a stable periodic state was reached and
enough shedding cycles were obtained. Figure 5 shows the cen-
terline displacement and displacement-velocity phase plots. The
centerline displacement data from [15] using a high order spec-
tral element method in a non-inertial reference frame and from a
previous immersed boundary simulation [6] are also given in the
figure. All the centerline displacement data have been shifted to
have the “figure of eight” plots from all cases centered at (0,0).
Our fine grid results match the reference data very well and there
is a clear trend of grid convergence of the solution, which can be
seen from the displacement-velocity phase plots as well.

FIGURE 6. TIME SERIES OF LIFT AND DRAG COEFFICIENTS
FOR A CIRCULAR CYLINDER FREELY VIBRATING IN THE
(X ,Y ) PLANE.

Figure 6 shows the time series of the lift and drag coeffi-
cients from the fine grid simulation. It is evident that a short
period of transient oscillation was experienced after the cylinder
was released from stationary state and very soon the stable peri-
odic state was achieved. Fig. 7 shows the instantaneous vorticity
contours from the free oscillating cylinder, which gives a clear
2S vortex pattern that has been observed in many experiments
and simulations.

It is worth noting that the same convergence criterion ε =
10−8 as [6] was used in simulations on all three grids. On the
fine grid about 4 iterations in average were used in each time step.
Since there is a predictor step and finalizer step, a total of 6 times
of displacing the immersed body. With the previous algorithm,
the averaged number of iterations was about the same, but the
cost is at least 5 times higher as the full system of fluid solver was
included in each iteration. For complex cases that require more
iterations, our current algorithm may result in an acceleration of
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FIGURE 7. INSTANTANEOUS VORTICITY CONTOURS FOR
FOR A CIRCULAR CYLINDER FREELY VIBRATING IN THE
(X ,Y ) PLANE, THE + MARKS THE ORIGINAL LOCATION THE
CYLINDER WAS RELEASED.

one order of magnitude in term of the computational speed for
completing the whole simulation.

A Fluttering Rectangular Plate
In this case, a rectangular plate of size L×H, where H is the

thickness and L = 14H the width of the plate, was released in a
fluid at rest. The density of the plate is ρs = 2.71ρf. The gravita-
tional acceleration is g. Depending on the thickness/width ratio
and the initial condition, the plate may do complicated fluttering,
tumbling, or chaotic combined fluttering/tumbling motions. A
terminal velocity for the plate can be defined as

Ut =

√
2Hg

(
ρs

ρf
−1

)
. (30)

The Reynolds number can be defined using this terminal velocity
as Re = UtL/ν with ν the kinematic viscosity of the fluid. In this
case, the Reynolds number was 210. The computational domain
was 5.3L×14L in the horizontal and vertical directions, respec-
tively. A uniform grid of 300×800 was used with a resolution of
about 0.25H × 0.25H. The initial angle of the plate was 45 de-
grees and the plate was placed near the top of the domain when
it was released at t = 0.

Figure 8 shows the instantaneous vorticity contours at sev-
eral instants during the fall of the plate. For the current setup, the
plate developed periodic fluttering motion very soon after it was
released, which is also shown in Fig. 9 for time series of linear
and angular velocities of the plate. The results here qualitatively
agree well with reference experimental and computational results
available in the literature. But further validation is needed for de-
tailed quantitative comparison.

CONCLUSIONS AND FUTURE WORK
In this work, we have successfully simplified the sharp in-

terface immersed-boundary method in [5] by using a reformu-

(a) t = 0s (b) t = 0.25s (c) t = 0.50s (d) t = 0.75s

(d) t = 1.00s (e) t = 1.25s (f) t = 1.50s (g) Trajectory

FIGURE 8. INSTANTANEOUS VORTICITY CONTOURS AT
SEVERAL INTANTS FOR A FREE FALLING PLATE FLUTTER-
ING IN A FLUID. THE LAST FIGURE (G) SHOWS THE OVERLAID
TRAJECTORY OF THE PLATE.

lated pressure field extension approach and expedited the strong
coupling algorithm in [6] for FSI problems by taking the fluid
solver out of the FSI iterations. The resulting FSI strong cou-
pling method is very efficient without losing any accuracy from
the previous formulation. An acceleration of several times or
even one order of magnitude can be achieved with our current
approach.

Future work includes extending the current method for two-
phase flows interacting with moving bodies and adding an im-
mersed boundary based wall model to the local reconstruction for
high Reynolds number flows. In [16], we extended the sharp in-
terface immersed-boundary/level-set method in [10] to strongly
coupled wave-body interactions by using a non-inertial reference
frame. One limitation with this approach is that when large-angle
rotation is involved, the original Cartesian grid designed for re-
solving the air-water interface and the structure may not have a
good resolution for air-water interface away from the structure.
And the implementation of wall-modeled local reconstruction on
top of the approach in [16] could be cumbersome. Our current
approach can avoid these two issues by using a limited extent
of iterative operations. The wall function approach developed
in [17, 18] needs very fine resolution near the wall boundaries.
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FIGURE 9. TIME HISTORY OF THE LINEAR AND ANGULAR
VELOCITIES OF A FREE FALLING PLATE FLUTTERING IN A
FLUID.

In [19] some prelimilary work to improve it by decoupling the
pressure and the velocity jump at the immersed boundary was
reported using an approximate domain approach. Nonetheless,
further studies are required for developing a wall-modeled im-
mersed boundary method that can be used for simulating wave-
body interactions in ship hydrodynamics.
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