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A sharp interface LES methodology on orthogonal curvilinear grid for breaking waves 

produced by an interface-piercing body at high Reynolds number is presented. Both gas and 

liquid phases are considered for the strong interactions between two phases, such as spray 

dispersion and bubble entrainment. The level-set based ghost fluid method is adopted for 

sharp interface treatment and a volume-of-fluid method in orthogonal curvilinear 

coordinates is coupled with the level set method for enhanced interface tracking. A 

Lagrangian dynamic Smagorinsky subgrid-scale model is used for the spatially filtered 

turbulence closure.  Several numerical tests are conducted in order to validate the code. 

Wave breaking around a wedge-shaped bow is simulated with the results compared with the 

experimental measurement. 

I. Introduction 

UMERICAL simulation of ship flows is difficult and challenging since it involves two-phase interfacial flows 

interacting with moving bodies of complex geometries. In the study
1
 by Yang and Stern, a sharp interface 

Cartesian grid solver (CFDShip-Iowa Version 6.1) was developed for the high-performance, high-fidelity, multi-

scale simulation of two-phase turbulent flows in ship hydrodynamics. It is a very accurate, efficient and robust CFD 

tool with high order numerical schemes, simple code modules and structures, and little memory and CPU intensive. 

The techniques and schemes used in this solver have been extensively verified and validated and applied in the 

simulations related to ship hydrodynamics.
1-8

 Cartesian grid is simple and easy to generate, and the complex 

geometry can be handled using the immersed boundary method (IBM). However, large numbers of grid points are 

required in order to resolve the boundary layer since the Cartesian grid line usually does not coincide with the body 

surface. For the curvilinear grid, grid refinement near the body surface can be easily achieved without significantly 

increasing the total grid points. For general curvilinear grid, the equation discretization and numerical procedures are 

usually complicated. This can be greatly simplified when an orthogonal curvilinear grid is used. The orthogonal 

curvilinear grid not only relaxes the limitations of the Cartesian grid but also retains the similar accuracy, robustness 

and efficiency as the Cartesian grid method, which is very useful for two-phase flow problems with simple 

geometries such as bump, cylinder, hydrofoil, wedge, etc. Herein, the Cartesian grid solver (Version 6.1) is extended 

to orthogonal curvilinear coordinates (Version 6.2) for fully resolved boundary layer as the first step towards a 

general curvilinear grid solver (Version 6.3). An effort of combining the Cartesian and orthogonal curvilinear grid 

solvers using an overset method (Version 6.2.5) was performed in Ref. 9.    

 In this paper, a sharp interface large-eddy simulation (LES) methodology on orthogonal curvilinear coordinates 

for the breaking waves produced by an interface-piercing body at high Reynolds numbers is presented. Both gas and 

liquid phases are considered for the strong interactions between two phases, such as spray dispersion and bubble 

entrainment. The level-set based ghost fluid method is adopted for sharp interface treatment and a volume-of-fluid 

method in orthogonal curvilinear coordinates is coupled with the level set method for enhanced interface tracking 

properties. A Lagrangian dynamic Smagorinsky subgrid-scale model is used for the spatially filtered turbulence 

closure. The orthogonal curvilinear grid solver is first tested by the LES predictions for fully-developed turbulent 

channel flow without considering two-phase effect. Several small-scale cases, bubbles and droplets, are calculated 

and compared with reference data to validate the sharp interface model on the orthogonal curvilinear grid. Finally, 

wave breaking around a wedge-shaped bow is simulated. 
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II. Mathematical Model and Numerical Methods 

The mathematical model and numerical method in the orthogonal curvilinear coordinates used in this study are 

the extension of CFDShip-Iowa Version 6, a sharp interface Cartesian grid solver for two-phase incompressible 

flows recently developed at IIHR.
1
 In this solver, the interface is tracked by a coupled level set and volume-of-fluid 

(CLSVOF) method.
2
 A ghost fluid methodology is adopted to handle the jump conditions across the interface, where 

the density and surface tension effect are treated in a sharp way while the viscosity is smeared by a smoothed 

Heaviside function. 

A. Navier-Stokes Equations and LES Modeling 

For the incompressible turbulent flows of two immiscible fluids, e.g., air and water, the filtered Navier-Stokes 

equations written in the vector form are given as follows: 

       
1 1

p
t


 


        



u
u u T g ,  (1) 

        0 u , (2) 

where   ̅denotes the filter operation on a variable f, t is time, u is the velocity vector, p is pressure, ρ is the density, g 

represents the gravity acceleration, and T is the viscous stress tensor defined as 

         2T S , (3) 

with μ the dynamic viscosity and S the strain rate 

           1

2

T
   S u u . (4) 

τ is the subgrid-scale (SGS) stress tensor for the LES. In the LES, the small dissipative eddies are modeled by the 

SGS model whereas the large, energy carrying, eddies are resolved by the spatially filtered Navier-Stokes equations. 

Since the fluid properties are discontinuous across the interface, which is a function of time and space, density 

and viscosity are also functions of time and space and only known with given interface position. They will be 

defined using the level set function later.  

With the contravariant velocity components Ui (i =1, 2, 3), defined in the coordinates direction, chosen as the 

dependent variables, the Navier-Stokes equations can be fully transformed from the Cartesian coordinates ),,( zyx  

to the orthogonal curvilinear coordinates ),,( 321 xxx : 
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The metric coefficients h1, h2, h3 are defined by 

 3. 2, 1,  ,
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The effective total viscosity is defined as teff   / with t the turbulent eddy viscosity. 

B. Interface Modeling 

Defining the interface Г as the zero level set of a signed distance function , or the level set function, the 

position of the interface can be tracked by solving the level set evolution equation 

         0
t





  


u . (16) 

In the coupled level set and volume-of-fluid method, the volume-of-fluid function, F, is defined as the liquid 

volume fraction in a cell with its value in between zero and one in a surface cell and zero and one in air and liquid 

respectively. The advection equation of F is 

  0
F

F
t


  


u . (17) 

The level set function is corrected based on the reconstructed interface using VOF function for mass conservation. 

With the level set function defined, the fluid properties, such as density and viscosity, are given by the 

following equations:   

 
)()(

)()(





H

H

GLG

GLG




, (18) 

where the subscripts G and L represent gas and liquid phase, respectively. )(H and )(H  are the stepwise and 

smoothed Heaviside functions,
1
 respectively.  

As for the jump conditions at the interface, the velocity across the interface Г is continuous, as the fluids are 

viscous and no phase change is considered here: 

           0u , (19) 

and the jump condition for stress is 

            T
p          

  
n I u u n , (20) 

where [ ] indicates the jump at the interface, i.e., I I

L Gf f  for a variable f with superscript I denotes interface, n is 

the unit vector normal to the interface, σ is the coefficient of surface tension, and κ is the local curvature of the 

interface. Notice that with a continuous viscosity and velocity field, the stress jump condition Eq. (20) reduces to 
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           I I

L Gp p p     . (21) 

The level set and VOF advection Eqs. (16) and (17) can be rewritten in the orthogonal curvilinear coordinates 

),,( 321 xxx as, 
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respectively. 

C. Numerical Methods and High Performance Computing 

A finite-difference method is used to discretize the governing equations on a non-uniform staggered orthogonal 

grid, in which the contravariant velocity components ),,( 321 UUU are defined at the cell face centers in the 

coordinates ),,( 321 xxx directions, respectively. All other variables are defined at the cell centers. Time advancement 

of the present study is based on the semi-implicit four-step fractional step method.
10

 The diagonal diffusion terms 

are advanced with the second-order Crank–Nicholson method and the other terms by the second-order explicit 

Adams–Bashforth method. The pressure Poisson equation is solved to enforce the continuity equation. 

The convective terms are discretized using the fifth-order Hamilton–Jacobi Weighted-ENO (HJ-WENO) 

scheme.
11

 The other terms are discretized by the second-order central difference scheme. The pressure Poisson 

equation is solved using a semi-coarsening multigrid solver from the HYPRE library.
12

 In general, the Poisson 

solver is the most expensive part of the whole algorithm and uses about 80–85% of the total computation time. 

The level-set equations are solved using the third-order TVD Runge–Kutta scheme
13

 for time advancement and 

the fifth-order HJ-WENO scheme
11

 for spatial discretization. These equations are solved for the cells in a narrow 

band about a few grid-cell width to reduce computational overhead.
14

 In the CLSVOF method, the interface is 

reconstructed via a PLIC scheme and the level set function is re-distanced based on the reconstructed interface. The 

interface is advected using a Lagrangian method with a second-order Runge-Kutta scheme for time integration. 

The code is parallelized via a domain decomposition (in three directions) technique using the MPI library. All 

inter-processor communications for ghost cell information exchange are in non-blocking mode. In general, optimal 

load balance can be achieved except for a small amount of overhead due to interface, which may be unevenly 

distributed over processors. Parallel I/O using MPI2 have been implemented such that all processors read from and 

write to one single file simultaneously, which is much more effective than one or a few processors receive data from 

all processors and write to one or a few files and more convenient than every processor writes its own data files.  

III. Results 

In this section, the computational results of some numerical examples are presented. In the first example, the 

LES of a fully-developed turbulent channel flow is performed, in which only single phase flow is considered. The 

sharp interface method are validated using a small scale droplet and air bubble. Wave breaking by a wedge-shaped 

bow is chosen as an application example for the interface piercing body problems. Applications in the cylinder and 

bump flows have been reported in Refs. 15 and 16, respectively.     

A. Channel Flow 

LES predictions are obtained for fully-developed turbulent channel flow with a Reynolds number based on the 

bulk velocity, Ub, and channel half-height  of 2800. The same non-dimensional computational domain size as the 

Re = 180 DNS case of Ref. 17 was used. A constant mesh spacing is used in the x and y directions. A non-uniform 

mesh spacing is used in the z direction using a cosine function. Periodic boundary conditions are enforced for all 

variables in the streamwise and spanwise directions. An artificial forcing mechanism suggested in Ref. 18 was used 

to mimic an imposed streamwise pressure gradient and to maintain a fixed mass flow rate.  A Poiseuille parabolic 

streamwise velocity profile is used to initialize the streamwise velocity and random velocity fluctuations were 

superimposed on all three velocity components. The maximum CFL number is about 1. Figure 1 shows the time-

averaged streamwise velocity profile, normalized by the friction velocity, on a logarithmic axis. The figure shows 

good agreement between the present LES results and the previous DNS results,
17

 especially in the viscous sub-layer 

and logarithmic region. There is a slight over-prediction of about 1.5 % near the centerline. This is most likely 
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caused by the enhanced dissipation leading to an under-prediction of the skin friction velocity due to the combined 

influences of the subgrid-scale model. The r.m.s. (root mean square) values for all three velocity components, 

normalized by friction velocity, are shown in Fig. 2 along with the DNS results.
17

 The profile of streamwise velocity 

fluctuations case is in very good agreement with the DNS results. The location and value of the peak are also well 

predicted. The spanwise and wall-normal velocity fluctuations are also in good agreement with the DNS data. 

 

 

Figure 1. Mean streamwise velocity profiles for the channel flow case; logarithmic plot showing comparison 

to previous DNS data.
17 

 

 

Figure 2. Streamwise, transverse, and spanwise velocity fluctuations for the channel flow case; comparison to 

previous DNS data.
17 
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B. Air Bubble Rising in Quiescent Water  

An air bubble with a diameter of 2 mm rising in quiescent water is simulated. Constant physical properties of air 

and water are chosen as: = 0.0728 kg/s
2
, l =1000 kg/m

3
, g =1.226 kg/m

3
, l =1.137 10

-3 
kg/ms, g =1.78 10

-

5 
kg/ms, and the gravity g = -9.8 m/s

2
. The computations are conducted on an annular sector domain as shown in 

Fig. 3 with a grid size of 100×100×100.  

Figure 3 shows the bubble shapes at different time instants. For small size air bubbles, surface tension force is 

dominant and air bubbles can reach a steady state with a stable shape and constant rising velocity.  As show in the 

figure, the predicted bubble shape is elliptical which is consistent with the experimental observations.
19

 The 

computed terminal velocity is 0.291mm/ms which is in excellent agreement with the experimental value of 0.287 

mm/ms calculated using the experimental correlation proposed in Ref. 20, which is given by 

         2/2 eelT gddu   . (24) 

 

 

Figure 3. Time sequences of an air bubble rising in quiescent water. 

 

C. Liquid Drop Impact onto a Liquid Pool  

A water drop with a diameter of 2.9 mm impact onto a deep water pool is simulated. In this test, the 

experimental case with a falling height of 170 mm in Ref. 21 is simulated, where the corresponding Fr = 85, We = 

96, and Re = 4480.  The simulation conditions are the same as those used in Ref. 21. The simulations are performed 

on a 2D axisymmetric domain. Details of the computational setup can be found in Ref. 21. A fully 3D simulation 

was carried out in Ref. 2 on a Cartesian grid. 

 Time sequences of the drop impingement process along with the video images and simulations presented in Ref. 

21 are shown in Fig. 4. The major events of the impact process, such as the formation of the vortex rings, 

entrapment of an air bubble during the cavity collapse and formation of the thin high speed liquid jet, are well 

captured in the current simulation. The predicted interface profiles also match both the experimental image and 
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simulations very well. Due to the neglect of the gas phase dynamics in the numerical model used in Ref. 21, the air 

bubble could not be captured in their simulations.  

 

 

 

 

 

  
                                                     (a)                              (b)                          (c) 

Figure 4. Time sequences of a water drop impact onto a deep water pool. (a) Present simulation; (b) 

experiment;
21

 (c) simulation.
21

 

D. Wave Breaking by a Wedge-Shaped Bow 

The geometry of the wedge, the computational domain are shown in Fig. 5. The geometry of the wedge is similar 

to the large wedge model used in Ref. 22. The side length of the wedge is L = 0.75 m, and the height of the wedge is 

H = 1.0 m. The half wedge angle is θ = 26° and the flare angle φ = 0°. The sharp edge corners are rounded with an 

arc of a small radius in order to make the grid orthogonal at the corners. The grids are refined near the solid surface. 

 In the case considered here, the water depth is d = 0.0745 m and the upstream velocity is U = 2.5 m/s, the 

corresponding Reynolds number,         , is         , and the Froude number,      √  , is 2.93. The 

domain of the orthogonal curvilinear grid are x = [-5.33 m, 4.55 m], y = [-0.0745 m, 0.6 m], and z = [0 m, 5 m] as 

shown in Fig. 5. Uniform inflow and convective outflow boundary conditions are used. Slip wall boundary 

conditions are imposed at all the other boundaries. A uniform velocity field same as the upstream velocity is 

prescribed to the entire computational domain at the t = 0. 

Figure 6 shows the computed bow wave profile compared with the experimental video image. As shown in the 

figure, the overall structure of the wave is very similar to the experimental observation, such as the thin liquid sheet 

at the leading edge of the bow, overturning jet, jet plunging onto the free surface, and splashes at the wake. As the 
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liquid sheet overturns, the sheet is stretched and fingered up, and some "cylindrical drops" then pinch off from the 

liquid sheet, when the detached drops impact onto the water surface, a spray region is created.  

 

(a) (b) 

 

Figure 5. Wedge geometry and grid structure. (a). Wege; (b). Grid. 

 

 
 

Figure 6. Wave profiles for both experiment (Ref. 22) and simulation with 1 billion grid points. 

 

 
Figure 7. Comparison of the wave elevation with the experimental results (Ref. 22).   

 

The wave contact line elevations along the wedge side starting from the leading edge for different cases 

compared with the experimental measurements are shown in Fig. 7. For comparison purposes, the computational 

results on the Cartesian grid are also presented in Fig. 7. Both the experimental results
22

 for the towing tank model 

and the flume model are included in the figure. As shown in the figure, the maximum height of the flume case is 
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below the towing tank case. It was explained that this discrepancy might be due to the camera orientations which 

might not be exactly perpendicular to the model and parallel with the undisturbed free surface.
 23

  

The overall wave contact line profiles from both the simulations and experiment have the similar trend.  For the 

coarse Cartesian grid, the wave height is far below the experimental results. With increased grid resolutions near the 

wall, the wave height increases significantly. Grid refinement near the solid wall is much easier for the curvilinear 

grid than the Cartesian grid. With the orthogonal curvilinear grid, the grid resolutions near the solid wall are further 

increased without substantial increase of the total grid points. The wave height computed on the orthogonal 

curvilinear grid is greatly increased, which is very close to the flume model case.
22

  

In the future work, the mechanism of the liquid sheet disturbance, spray formation including fingering structure 

and pinching off drops will be investigated. Finer grid (3 to 4 billion) will be used in order to effectively resolve the 

small-sized bubbles/drops in the plunging region. With the finer grid, bubbles/drops size, and distribution will be 

calculated and compared with the available experimental data. 

IV. Conclusions 

 A sharp interface LES methodology on orthogonal curvilinear grid for breaking waves produced by an interface-

piercing body at high Reynolds number is presented. The Cartesian grid solver developed in Ref. 1 is extended to 

orthogonal curvilinear coordinates for fully resolved boundary layer. Both gas and liquid phases are considered for 

the strong interactions between two phases, such as spray dispersion and bubble entrainment. The level-set based 

ghost fluid method is adopted for sharp interface treatment and a volume-of-fluid method in orthogonal curvilinear 

coordinates is coupled with the level set method for enhanced interface tracking properties. A Lagrangian dynamic 

Smagorinsky subgrid-scale model is used for the spatially filtered turbulence closure.  

 Several numerical tests are conducted in order to validate the code. The orthogonal curvilinear grid solver is first 

tested by the LES of a fully-developed turbulent channel flow, where only single phase flow is considered. The 

computational results are compared with the DNS data reported in literature and good agreement is obtained. As two 

challenging examples for two-phase interfacial flows, a small-scale air bubble rising in quiescent water and a liquid 

droplet impact onto a liquid pool are molded. Both cases match the experimental observations and measurements 

very well. Finally, wave breaking around a wedge-shaped bow is simulated. The predicted overall bow wave profile 

including thin liquid sheet at the leading edge, overturning jet and plunging, and splashes at the wake are very 

similar to the experimental observations. With increased grid resolution near the side wall of the wedge using the 

orthogonal curvilinear grid, the maximum elevation of the wave crest increases dramatically which matches the 

flume model case very well. 

In the future work, the numerical tests will be further validated and grid refinement study will be conducted for 

each test cases. More numerical tests and examples, such as Wigley hull, will be included in order further verify and 

validate the code. 
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