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Outline 
  Pass Transistors 
  DC Response 
  Logic Levels and Noise Margins 
  Transient Response 
  RC Delay Models 
  Delay Estimation 
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Pass Transistors 
  We have assumed source is grounded 
  What if source > 0? 

–  e.g. pass transistor passing VDD 
  Vg = VDD 

–  If Vs > VDD-Vt, Vgs < Vt 
–  Hence transistor would turn itself off 

  nMOS pass transistors pull no higher than VDD-Vtn 
–  Called a degraded “1” 
–  Approach degraded value slowly (low Ids) 

  pMOS pass transistors pull no lower than Vtp 
  Transmission gates are needed to pass both 0 and 1  
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Pass Transistor Ckts 
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DC Response 
  DC Response: Vout vs. Vin for a gate 
  Ex: Inverter 

–  When Vin = 0   ->  Vout = VDD 

–  When Vin = VDD   ->  Vout = 0 
–  In between, Vout depends on 

 transistor size and current 
–  By KCL, must settle such that 

 Idsn = |Idsp| 
–  We could solve equations 
–  But graphical solution gives more insight 
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Transistor Operation 
  Current depends on region of transistor behavior 
  For what Vin and Vout are nMOS and pMOS in 

–  Cutoff? 
–  Linear? 
–  Saturation? 
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nMOS Operation 
Cutoff Linear Saturated 
Vgsn < Vtn 

Vin < Vtn 

Vgsn > Vtn 

Vin > Vtn 

Vdsn < Vgsn – Vtn 

Vout < Vin - Vtn 

Vgsn > Vtn 

Vin > Vtn 

Vdsn > Vgsn – Vtn 

Vout > Vin - Vtn 

Vgsn = Vin 

Vdsn = Vout 
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pMOS Operation 
Cutoff Linear Saturated 
Vgsp > Vtp 

Vin > VDD + Vtp 

Vgsp < Vtp 

Vin < VDD + Vtp 

Vdsp > Vgsp – Vtp 

Vout > Vin - Vtp 

Vgsp < Vtp 

Vin < VDD + Vtp 

Vdsp < Vgsp – Vtp 

Vout < Vin - Vtp 

Vgsp = Vin - VDD 

Vdsp = Vout - VDD 

Vtp < 0 



CMOS VLSI Design CMOS VLSI Design 4th Ed. 5: DC and Transient Response 9 

I-V Characteristics 
  Make pMOS is wider than nMOS such that βn = βp 
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Current vs. Vout, Vin 
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Load Line Analysis 
  For a given Vin: 

–  Plot Idsn, Idsp vs. Vout 

–  Vout must be where |currents| are equal in 
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Load Line Analysis 
  Vin = 0   Vin = 0 0.2VDD 0.4VDD 0.6VDD 0.8VDD VDD 
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DC Transfer Curve 
  Transcribe points onto Vin vs. Vout plot 
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Operating Regions 
  Revisit transistor operating regions 

Region nMOS pMOS 
A Cutoff Linear 
B Saturation Linear 
C Saturation Saturation 
D Linear Saturation 
E Linear Cutoff 
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Beta Ratio 
  If βp / βn ≠ 1, switching point will move from VDD/2 
  Called skewed gate 
  Other gates: collapse into equivalent inverter 
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Noise Margins 
  How much noise can a gate input see before it does 

not recognize the input? 
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Logic Levels 
  To maximize noise margins, select logic levels at  

–  unity gain point of DC transfer characteristic 
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Transient Response 
  DC analysis tells us Vout if Vin is constant 
  Transient analysis tells us Vout(t) if Vin(t) changes 

–  Requires solving differential equations 
  Input is usually considered to be a step or ramp 

–  From 0 to VDD or vice versa 
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Inverter Step Response 
  Ex: find step response of inverter driving load cap 
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Delay Definitions 
  tpdr: rising propagation delay 

–  From input to rising output 
crossing VDD/2 

  tpdf: falling propagation delay 
–  From input to falling output 

crossing VDD/2 
  tpd: average propagation delay 

–  tpd = (tpdr + tpdf)/2 
  tr: rise time 

–  From output crossing 0.2 
VDD to 0.8 VDD 

  tf: fall time 
–  From output crossing 0.8 

VDD to 0.2 VDD 
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Delay Definitions 
  tcdr: rising contamination delay 

–  From input to rising output crossing VDD/2 
  tcdf: falling contamination delay 

–  From input to falling output crossing VDD/2 
  tcd: average contamination delay 

–  tpd = (tcdr + tcdf)/2 
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Simulated Inverter Delay 
  Solving differential equations by hand is too hard 
  SPICE simulator solves the equations numerically 

–  Uses more accurate I-V models too! 
  But simulations take time to write, may hide insight 
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Delay Estimation 
  We would like to be able to easily estimate delay 

–  Not as accurate as simulation 
–  But easier to ask “What if?” 

  The step response usually looks like a 1st order RC 
response with a decaying exponential. 

  Use RC delay models to estimate delay 
–  C = total capacitance on output node 
–  Use effective resistance R 
–  So that tpd = RC 

  Characterize transistors by finding their effective R 
–  Depends on average current as gate switches 
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Effective Resistance 
  Shockley models have limited value 

–  Not accurate enough for modern transistors 
–  Too complicated for much hand analysis 

  Simplification: treat transistor as resistor 
–  Replace Ids(Vds, Vgs) with effective resistance R 

•  Ids = Vds/R 
–  R averaged across switching of digital gate 

  Too inaccurate to predict current at any given time 
–  But good enough to predict RC delay 



CMOS VLSI Design CMOS VLSI Design 4th Ed. 5: DC and Transient Response 25 

RC Delay Model 
  Use equivalent circuits for MOS transistors 

–  Ideal switch + capacitance and ON resistance 
–  Unit nMOS has resistance R, capacitance C 
–  Unit pMOS has resistance 2R, capacitance C 

  Capacitance proportional to width 
  Resistance inversely proportional to width 
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RC Values 
  Capacitance 

–  C = Cg = Cs = Cd = 2 fF/µm of gate width in 0.6 µm  
–  Gradually decline to 1 fF/µm in nanometer techs. 

  Resistance 
–  R ≈ 6 KΩ*µm in 0.6 µm process 
–  Improves with shorter channel lengths 

  Unit transistors 
–  May refer to minimum contacted device (4/2 λ) 
–  Or maybe 1 µm wide device 
–  Doesn’t matter as long as you are consistent 
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Inverter Delay Estimate 
  Estimate the delay of a fanout-of-1 inverter 

d = 6RC 
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Delay Model Comparison 
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Example: 3-input NAND 
  Sketch a 3-input NAND with transistor widths chosen to 

achieve effective rise and fall resistances equal to a unit 
inverter (R). 

3 

3 

3 

2 2 2 
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3-input NAND Caps 
  Annotate the 3-input NAND gate with gate and diffusion 

capacitance. 
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Elmore Delay 
  ON transistors look like resistors 
  Pullup or pulldown network modeled as RC ladder 
  Elmore delay of RC ladder 
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Example: 3-input NAND 
  Estimate worst-case rising and falling delay of 3-input NAND 

driving h identical gates. 
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Delay Components 
  Delay has two parts 

–  Parasitic delay 
•  9 or 11 RC 
•  Independent of load  

–  Effort delay 
•  5h RC 
•  Proportional to load capacitance 
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Contamination Delay 
  Best-case (contamination) delay can be substantially less than 

propagation delay. 
  Ex: If all three inputs fall simultaneously 
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Diffusion Capacitance 
  We assumed contacted diffusion on every s / d. 
  Good layout minimizes diffusion area 
  Ex: NAND3 layout shares one diffusion contact 

–  Reduces output capacitance by 2C 
–  Merged uncontacted diffusion might help too 
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Layout Comparison 
  Which layout is better? 


