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Outline
Basic I/O Pads
I/O Channels
– Transmission Lines
– Noise and Interference

High-Speed I/O
– Transmitters 
– Receivers

Clock Recovery
– Source-Synchronous
– Mesochronous
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Input / Output
Input/Output System functions
– Communicate between chip and external world
– Drive large capacitance off chip
– Operate at compatible voltage levels
– Provide adequate bandwidth
– Limit slew rates to control di/dt noise
– Protect chip against electrostatic discharge
– Use small number of pins (low cost)
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I/O Pad Design
Pad types
– VDD / GND
– Output
– Input
– Bidirectional
– Analog
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Output Pads
Drive large off-chip loads (2 – 50 pF)
– With suitable rise/fall times
– Requires chain of successively larger buffers

Guard rings to protect against latchup
– Noise below GND injects charge into substrate
– Large nMOS output transistor
– p+ inner guard ring
– n+ outer guard ring

• In n-well
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Input Pads
Level conversion
– Higher or lower off-chip V
– May need thick oxide gates

Noise filtering
– Schmitt trigger
– Hysteresis changes VIH, VIL

Protection against electrostatic discharge
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ESD Protection
Static electricity builds up on your body
– Shock delivered to a chip can fry thin gates
– Must dissipate this energy in protection circuits 

before it reaches the gates
ESD protection circuits
– Current limiting resistor
– Diode clamps

ESD testing
– Human body model
– Views human as charged capacitor
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clamps
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Current
limiting
resistor

Device
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Bidirectional Pads
Combine input and output pad
Need tristate driver on output
– Use enable signal to set direction
– Optimized tristate avoids huge series transistors
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Analog Pads
Pass analog voltages directly in or out of chip
– No buffering
– Protection circuits must not distort voltages
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MOSIS I/O Pad
1.6 μm two-metal process
– Protection resistors
– Protection diodes
– Guard rings
– Field oxide clamps
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UofU I/O Pad
0.6 μm three-metal process
– Similar I/O drivers
– Big driver transistors 

provide ESD protection
– Guard rings around 

driver
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I/O Channels
I/O Channel: connection between chips
– Low frequency: ideal equipotential net
– High frequency: transmission line

Transmission lines model
– Finite velocity of signal along wire
– Characteristic impedance of wire
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When is a wire a T-Line?
When propagation delay along the wire is 
comparable to the edge rate of the signal 
propagating
Depends on
– Length
– Speed of light in the medium
– Edge rate
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Example
When must a 10 cm trace on a PCB be treated as a 
transmission line
– FR4 epoxy has k = 4.35 (ε = kε0)
– Assume rise/fall times are ¼ of cycle time

Signal propagation velocity

Wire flight time

Thus the wire should be treated as a transmission 
line when signals have a period < 2.8 ns (> 350 MHz)

8 m
s cm

ns
3 10  14.4

2.0864.35
cv ×

= = =

cm
ns

10 cm 0.7 ns
14.4 

t = =
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Characteristic Impedance
Z0: ratio of voltage to current of a signal along the line
Depends on the geometry of the line
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Microstrip: Outer layer of PCB

Stripline: Inner layer of PCB
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Example
A 4-layer PCB contains power and ground planes on the inner 
layers and signals on the outer layers.  The board uses 1 oz 
copper (1.4 mils thick) and the FR4 dielectric is 8.7 mils thick.  
How wide should the traces be to achieve 50 Ω characteristic 
impedance?
This is a microstrip design.  Solve for w with 
– t = 1.4 mils
– h = 8.7 mils 
– k = 4.35
– Z0 = 50 Ω

w = 15 mils
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Reflections
When a wave hits the end of a transmission line, 
part of the energy will reflect if the load impedance 
does not match the characteristic impedance.

Reflection coefficient:

A wave with an amplitude of Vreflected = ΓVincident
returns along the line.

0

0

L

L

Z Z
Z Z

−
Γ =

+



23: I/O 18CMOS VLSI DesignCMOS VLSI Design 4th Ed.

Example: Reflections
A strong driver with a 
Thevenin equivalent 
resistance of 10 Ω drives an 
unterminated transmission 
line with Z0 = 50 Ω and flight 
time T.  Plot the voltage at 
the 1/3 point and end of the 
line. 
Reflection coefficients: 

Initial wave: 50/(10+50) = 5/6
Observe ringing at load

10 50 2 50;  1
10 50 3 50S L
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+ ∞+
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Intersymbol Interference
Must wait until reflections damp out before sending 
next bit
Otherwise, intersymbol interference will occur
With an unterminated transmission line, minimum bit 
time is equal to several round trips along the line
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Example: Load Termination
Redo the previous example if 
the load is terminated with a 
50 Ω resistor.
Reflection coefficients: 

Initial wave: 50/(10+50) = 5/6
No ringing
Power dissipation in load 
resistor
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Example: Source Termination
Redo the previous example if 
the source is terminated with 
an extra 40 Ω resistor.
Reflection coefficients: 

Initial wave: 50/(50+50) = 1/2
No ringing
No power dissipation in load
Taps along T-line 
momentarily see invalid levels

50 50 500;  1
50 50 50S L

− ∞−
Γ = = Γ = =

+ ∞+
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Termination Summary
For point-to-point links, 
source terminate to save 
power

For multidrop busses, load 
terminate to ensure valid 
logic levels

For busses with multiple 
receivers and drivers, 
terminate at both ends of 
the line to prevent 
reflections from either end
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Noise and Interference
Other sources of intersymbol
interference:
– Dispersion

• Caused by nonzero line 
resistance

– Crosstalk
• Capacitive or inductive coupling 

between channels
– Ground Bounce

• Nonzero return path impedance
– Simultaneous Switching Noise
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High-Speed I/O
Transmit data faster than the flight time along the line
Transmitters must generate very short pulses
Receivers must be accurately synchronized to detect 
the pulses



23: I/O 25CMOS VLSI DesignCMOS VLSI Design 4th Ed.

High Speed Transmitters
How to handle termination?
– High impedance current-mode driver + load term?
– Or low-impedance driver + source termination

Single-ended vs. differential
– Single-ended uses half the wires
– Differential is Immune to common mode noise

Pull-only vs. Push-Pull
– Pull-only has half the transistors
– Push-pull uses less power for the same swing
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D
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Gunning Transceiver 
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Current Mode 
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Low-Voltage 
Differential 
Signalling
(LVDS)
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High-Speed Receivers
Sample data in the middle of the bit interval
How do we know when?
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Source-Synchronous Clocking
Send clock with the data
Flight times roughly match each other
– Transmit on falling edge of tclk
– Receive on rising edge of rclk
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Single vs. Double Data Rate
In ordinary single data rate (SDR) system, clock 
switches twice as often as the data

If the system can handle this speed clock, the data is 
running at half the available bandwidth
In double-data-rate (DDR) transmit and receive on 
both edges of the clock
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Phase Alignment
If the DDR clock is aligned to the transmitted clock, it 
must be shifted by 90º before sampling
Use PLL
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Mesochronous Clocking
As speeds increase, it is difficult to keep clock and 
data aligned
– Mismatches in trace lengths
– Mismatches in propagation speeds
– Different in clock vs. data drivers

Mesochronous: clock and data have same 
frequency but unknown phase
– Use PLL/DLL to realign clock to each data 

channel
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Phase Calibration Loop
Special phase detector compares clock & data phase


